期刊
  出版年
  关键词
结果中检索 Open Search
Please wait a minute...
选择: 显示/隐藏图片
1. 基于路径和增强三元组文本的开放世界知识推理模型
王利琴, 耿智雷, 李英双, 董永峰, 边萌
《计算机应用》唯一官方网站    2025, 45 (4): 1177-1183.   DOI: 10.11772/j.issn.1001-9081.2024030265
摘要72)   HTML0)    PDF (838KB)(147)    收藏

传统的基于表示学习的知识推理方法只能用于封闭世界的知识推理,有效进行开放世界的知识推理是目前的热点问题。因此,提出一种基于路径和增强三元组文本的开放世界知识推理模型PEOR(Path and Enhanced triplet text for Open world knowledge Reasoning)。首先,使用由实体对间结构生成的多条路径和单个实体周围结构生成的增强三元组,其中路径文本通过拼接路径中的三元组文本得到,而增强三元组文本通过拼接头实体邻域文本、关系文本和尾实体邻域文本得到;其次,使用BERT(Bidirectional Encoder Representations from Transformers)分别编码路径文本和增强三元组文本;最后,使用路径向量和三元组向量计算语义匹配注意力,再使用语义匹配注意力聚合多条路径的语义信息。在3个开放世界知识图谱数据集WN18RR、FB15k-237和NELL-995上的对比实验结果表明,与次优模型BERTRL(BERT-based Relational Learning)相比,所提模型的命中率(Hits@10)指标分别提升了2.6、2.3和8.5个百分点,验证了所提模型的有效性。

图表 | 参考文献 | 相关文章 | 多维度评价
2. 融合先验知识和字形特征的中文命名实体识别
董永峰, 白佳明, 王利琴, 王旭
《计算机应用》唯一官方网站    2024, 44 (3): 702-708.   DOI: 10.11772/j.issn.1001-9081.2023030361
摘要292)   HTML15)    PDF (750KB)(549)    收藏

针对命名实体识别(NER)任务中相关模型通常仅对字符及相关词汇进行建模,未充分利用汉字特有的字形结构信息和实体类型信息的问题,提出一种融合先验知识和字形特征的命名实体识别模型。首先,采用结合高斯注意力机制的Transformer对输入序列进行编码,并从中文维基百科中获取实体类型的中文释义,采用双向门控循环单元(BiGRU)编码实体类型信息作为先验知识,利用注意力机制将它与字符表示进行组合;其次,采用双向长短时记忆(BiLSTM)网络编码输入序列的远距离依赖关系,通过字形编码表获得繁体的仓颉码和简体的现代五笔码,采用卷积神经网络(CNN)提取字形特征表示,并根据不同权重组合繁体与简体字形特征,利用门控机制将它与经过BiLSTM编码后的字符表示进行组合;最后,使用条件随机场(CRF)解码,得到命名实体标注序列。在偏口语化的数据集Weibo、小型数据集Boson和大型数据集PeopleDaily上的实验结果表明,与基线模型MECT(Multi-metadata Embedding based Cross-Transformer)相比,所提模型的F1值别提高了2.47、1.20和0.98个百分点,验证了模型的有效性。

图表 | 参考文献 | 相关文章 | 多维度评价
3. 融合实体语义及结构信息的知识图谱推理
王利琴, 张特, 许智宏, 董永峰, 杨国伟
《计算机应用》唯一官方网站    2024, 44 (11): 3371-3378.   DOI: 10.11772/j.issn.1001-9081.2023111677
摘要178)   HTML6)    PDF (705KB)(70)    收藏

目前,图注意力网络(GAT)通过引入注意力机制对目标实体的邻域实体赋予不同权重并进行信息聚合,使得它更关注实体的局部邻域,忽略了图结构中实体和关系之间的拓扑结构;而且在多头注意力后将输出嵌入向量简单拼接或平均,导致注意力头之间相互独立,未能捕捉不同注意力头的重要语义信息。针对GAT应用于知识图谱(KG)推理任务时未充分挖掘实体结构信息和语义信息的问题,提出融合实体语义及结构信息的知识图谱推理(FESSI)模型。首先,使用TransE将实体和关系表示为同一空间的嵌入向量。其次,提出交互注意力机制,将GAT中多头注意力重新融合成多个混合注意力,增强注意力头之间的交互性,以提取目标实体更丰富的语义信息;同时,利用关系图卷积网络(R-GCN)提取实体的结构信息,并通过权重矩阵学习GAT和R-GCN的输出特征向量。最后,使用ConvKB作为解码器进行评分。在知识图谱数据集Kinship、NELL-995和FB15K-237上的实验结果表明,FESSI模型的效果优于多数对比模型,在3个数据集的平均倒数排名(MRR)指标上的结果分别为0.964、0.565和0.562。

图表 | 参考文献 | 相关文章 | 多维度评价
4. 基于注意力平衡列表的溯因推理模型
徐铭, 李林昊, 齐巧玲, 王利琴
《计算机应用》唯一官方网站    2023, 43 (2): 349-355.   DOI: 10.11772/j.issn.1001-9081.2021122105
摘要363)   HTML28)    PDF (1484KB)(136)    收藏

溯因推理是自然语言推理(NLI)中的重要任务,旨在通过给定的起始观测事件和最终观测事件,推断出二者之间合理的过程事件(假设)。早期的研究从每条训练样本中独立训练推理模型;而最近,主流的研究考虑了相似训练样本间的语义关联性,并以训练集中假设出现的频次拟合其合理程度,从而更精准地刻画假设在不同环境中的合理性。在此基础上,在刻画假设的合理性的同时,加入了合理假设与不合理假设的差异性和相对性约束,从而达到了假设的合理性和不合理性的双向刻画目的,并通过多对多的训练方式实现了整体相对性建模;此外,考虑到事件表达过程中单词重要性的差异,构造了对样本不同单词的关注模块,最终形成了基于注意力平衡列表的溯因推理模型。实验结果表明,与L2R2模型相比,所提模型在溯因推理主流数据集叙事文本中的溯因推理(ART)上的准确率和AUC分别提高了约0.46和1.36个百分点,证明了所提模型的有效性。

图表 | 参考文献 | 相关文章 | 多维度评价
5. 融合多跳关系路径信息的关系推理方法
董永峰, 刘超, 王利琴, 李英双
计算机应用    2021, 41 (10): 2799-2805.   DOI: 10.11772/j.issn.1001-9081.2020121905
摘要416)      PDF (763KB)(523)    收藏
针对目前知识图谱(KG)中存在大量关系的缺失,以及在进行关系推理时没有充分考虑两实体间多跳路径中隐含信息的问题,提出了一种融合多跳关系路径信息的关系推理方法。首先,对于给定的候选关系和两个实体,利用卷积运算将连接两个实体的多跳关系路径编码到低维空间里并提取信息;其次,利用双向长短时记忆(BiLSTM)网络建模以生成关系路径表示向量,并利用注意力机制将其与候选关系表示向量进行组合;最后,采用多步推理方式找到匹配程度最高的关系作为推理结果并判断其精确率。与目前常用的路径排序算法(PRA)、神经网络模型Path-RNN以及强化学习模型MINERVA相比,在使用大型知识图谱数据集NELL995进行实验时,所提算法的平均精确率均值(MAP)分别提高了1.96、8.6和1.6个百分点;在使用小型知识图谱数据集Kinship进行实验时,所提方法的MAP比PRA、MINERVA分别提高了21.3、13和12.1个百分点。实验结果表明,所提算法能更加准确地推理出实体间的关系链接。
参考文献 | 相关文章 | 多维度评价
6. 基于迁移学习与多标签平滑策略的图像自动标注
汪鹏, 张奥帆, 王利琴, 董永峰
计算机应用    2018, 38 (11): 3199-3203.   DOI: 10.11772/j.issn.1001-9081.2018041349
摘要846)      PDF (960KB)(698)    收藏
针对图像标注数据集标签分布不平衡问题,提出了基于标签平滑策略的多标签平滑单元(MLSU)。MLSU在网络模型训练过程中自动平滑数据集中的高频标签,使网络适当提升了低频标签的输出值,从而提升了低频标注词的标注性能。为解决图像标注数据集样本数量不足造成网络过拟合的问题,提出了基于迁移学习的卷积神经网络(CNN)模型。首先利用互联网上的大型公共图像数据集对深度网络进行预训练,然后利用目标数据集对网络参数进行微调,构建了一个多标签平滑卷积神经网络模型(CNN-MLSU)。分别在Corel5K和IAPR TC-12图像标注数据集上进行实验,在Corel5K数据集上,CNN-MLSU较卷积神经网络回归方法(CNN-R)的平均准确率与平均召回率分别提升了5个百分点和8个百分点;在IAPR TC-12数据集上,CNN-MLSU较两场 K最邻近模型(2P KNN_ML)的平均召回率提升了6个百分点。实验结果表明,基于迁移学习的CNN-MLSU方法能有效地预防网络过拟合,同时提升了低频词的标注效果。
参考文献 | 相关文章 | 多维度评价