1 |
PAULHEIM H. Knowledge graph refinement: a survey of approaches and evaluation methods[J]. Semantic Web, 2017, 8(3): 489-508.
|
2 |
田玲,张谨川,张晋豪,等.知识图谱综述——表示、构建、推理与知识超图理论[J].计算机应用,2021,41(8):2161-2186.
|
|
TIAN L, ZHANG J C, ZHANG J H, et al. Knowledge graph survey: representation, construction, reasoning and knowledge hypergraph theory[J]. Journal of Computer Applications, 2021, 41(8): 2161-2186.
|
3 |
徐有为,张宏军,程恺,等.知识图谱嵌入研究综述[J].计算机工程与应用,2022,58(9):30-50.
|
|
XU Y W, ZHANG H J, CHENG K, et al. Comprehensive survey on knowledge graph embedding[J]. Computer Engineering and Applications, 2022, 58(9): 30-50.
|
4 |
BORDES A, USUNIER N, GARCIA-DURÁN A, et al. Translating embeddings for modeling multi-relational data[C]// Proceedings of the 26th International Conference on Neural Information Processing Systems — Volume 2. Red Hook, NY: Curran Associates Inc., 2013: 2787-2795.
|
5 |
WANG Z, ZHANG J, FENG J, et al. Knowledge graph embedding by translating on hyperplanes[C]// Proceedings of the 28th AAAI Conference on Artificial Intelligence. Palo Alto, CA: AAAI Press, 2014: 1112-1119.
|
6 |
LIN Y, LIU Z, SUN M, et al. Learning entity and relation embeddings for knowledge graph completion[C]// Proceedings of the 29th AAAI Conference on Artificial Intelligence. Palo Alto, CA: AAAI Press, 2015: 2181-2187.
|
7 |
JI G, HE S, XU L, et al. Knowledge graph embedding via dynamic mapping matrix[C]// Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing of the Asian Federation of Natural Language Processing (Volume 1: Long Papers). Stroudsburg, PA: ACL, 2015: 687-696.
|
8 |
XIAO H, HUANG M, HAO Y, et al. TransG: a generative mixture model for knowledge graph embedding[C]// Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Stroudsburg, PA: ACL, 2016: 2316-2325.
|
9 |
QIAN W, FU C, ZHU Y, et al. Translating embeddings for knowledge graph completion with relation attention mechanism[C]// Proceedings of the 27th International Joint Conference on Artificial Intelligence. California: IJCAI, 2018: 4286-4292.
|
10 |
NICKEL M, TRESP V, KRIEGEL H P. A three-way model for collective learning on multi-relational data[C]// Proceedings of the 28th International Conference on Machine Learning. Madison, WI: Omnipress, 2011: 809-816.
|
11 |
YANG B, YIH W T, HE X, et al. Embedding entities and relations for learning and inference in knowledge bases[EB/OL]. (2015-08-29) [2023-09-23]..
|
12 |
TROUILLON T, WELBL J, RIEDEL S, et al. Complex embeddings for simple link prediction[C]// Proceedings of the 33rd International Conference on International Conference on Machine Learning. New York: JMLR.org, 2016: 2071-2080.
|
13 |
NICKEL M, ROSASCO L, POGGIO T. Holographic embeddings of knowledge graphs[C]// Proceedings of the 30th AAAI Conference on Artificial Intelligence. Palo Alto, CA: AAAI Press, 2016: 1955-1961.
|
14 |
CAO Z, XU Q, YANG Z, et al. Dual quaternion knowledge graph embeddings[C]// Proceedings of the 35th AAAI Conference on Artificial Intelligence. Palo Alto, CA: AAAI Press, 2021: 6894-6902.
|
15 |
DETTMERS T, MINERVINI P, STENETORP P, et al. Convolutional 2D knowledge graph embeddings[C]// Proceedings of the 32nd AAAI Conference on Artificial Intelligence. Palo Alto, CA: AAAI Press, 2018: 1811-1818.
|
16 |
JIANG X, WANG Q, WANG B. Adaptive convolution for multi-relational learning[C]// Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers). Stroudsburg, PA: ACL, 2019: 978-987.
|
17 |
NGUYEN D Q, NGUYEN T D, NGUYEN D Q, et al. A novel embedding model for knowledge base completion based on convolutional neural network[C]// Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers). Stroudsburg, PA: ACL, 2018: 327-333.
|
18 |
SCHLICHTKRULL M S, KIPF T N, BLOEM P, et al. Modeling relational data with graph convolutional networks[C]// Proceedings of the 2018 International Conference, LNCS 10843. Cham: Springer, 2018: 593-607.
|
19 |
COLOMBO S, ALIVANISTOS D, COCHEZ M. Potential energy to improve link prediction with relational graph neural networks[C]// Proceedings of the 2022 AAAI Spring Symposium on Machine Learning and Knowledge Engineering for Hybrid Intelligence. Aachen: CEUR Workshop Proceedings, 2022: 1-9.
|
20 |
NATHANI D, CHAUHAN J, SHARMA C, et al. Learning attention-based embeddings for relation prediction in knowledge graphs[C]// Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Stroudsburg, PA: ACL, 2019: 4710-4723.
|
21 |
ZHAO Y, ZHOU H, XIE R, et al. Incorporating global information in local attention for knowledge representation learning[C]// Findings of the Association for Computational Linguistics: ACL-IJCNLP. Stroudsburg, PA: ACL, 2021: 1341-1351.
|
22 |
TERU K K, DENIS E, HAMILTON W L. Inductive relation prediction by subgraph reasoning[C]// Proceedings of the 37th International Conference on Machine Learning Research. New York: JMLR.org, 2020: 9448-9457.
|
23 |
WANG L, CHU H, DONG Y, et al. Learning neighborhood-based embedding sequence for link prediction in temporal knowledge graphs[J]. Journal of Intelligent and Fuzzy Systems, 2022, 43(6): 7983-7994.
|
24 |
BAI Y, LV X, LI J, et al. SQUIRE: a sequence-to-sequence framework for multi-hop knowledge graph reasoning[C]// Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing. Stroudsburg, PA: ACL, 2022: 1649-1662.
|
25 |
YANG W, LI X, WANG P, et al. A joint knowledge graph reasoning method[C]// Proceedings of the 2022 IEEE International Conference on Dependable, Autonomic and Secure Computing/ International Conference on Pervasive Intelligence and Computing/ International Conference on Cloud and Big Data Computing/ International Conference on Cyber Science and Technology Congress. Piscataway: IEEE, 2022: 1-6.
|
26 |
WANG Y, WANG H, LU W, et al. HyGGE: hyperbolic graph attention network for reasoning over knowledge graphs[J]. Information Sciences, 2023, 630: 190-205.
|
27 |
ZHOU J, DU Y, ZHANG R, et al. Adaptive depth graph attention networks[EB/OL]. [2023-09-23]..
|
28 |
LIN X V, SOCHER R, XIONG C. Multi-hop knowledge graph reasoning with reward shaping[C]// Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Stroudsburg, PA: ACL, 2018: 3243-3253.
|
29 |
XIONG W, HOANG T, WANG W Y. DeepPath: a reinforcement learning method for knowledge graph reasoning[C]// Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing. Stroudsburg, PA: ACL, 2017: 564-573.
|
30 |
TOUTANOVA K, CHEN D, PANTEL P, et al. Representing text for joint embedding of text and knowledge bases[C]// Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing. Stroudsburg, PA: ACL, 2015: 1499-1509.
|