1 |
徐增林,盛泳潘,贺丽荣,等. 知识图谱技术综述[J]. 电子科技大学学报, 2016, 45(4): 589-606.
|
|
XU Z L, SHENG Y P, HE L R, et al. Review on knowledge graph techniques[J]. Journal of University of Electronic Science and Technology of China, 2016, 45(4): 589-606.
|
2 |
黄恒琪,于娟,廖晓,等. 知识图谱研究综述[J]. 计算机系统应用, 2019, 28(6): 1-12.
|
|
HUANG H Q, YU J, LIAO X, et al. Review on knowledge graphs[J]. Computer Systems and Applications, 2019, 28(6): 1-12.
|
3 |
WANG Z, ZHANG J, FENG J, et al. Knowledge graph embedding by translating on hyperplanes[C]// Proceedings of the 28th AAAI Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2014: 1112-1119.
|
4 |
TROUILLON T, WEBLBL J, RIEDEL S, et al. Complex embeddings for simple link prediction[C]// Proceedings of the 33rd International Conference on Machine Learning. New York: JMLR.org, 2016: 2071-2080.
|
5 |
DETTMERS T, MINERVINI P, STENETORP P, et al. Convolutional 2D knowledge graph embeddings[C]// Proceedings of the 32nd AAAI Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2018: 1811-1818.
|
6 |
LAO N, COHEN W W. Relational retrieval using a combination of path-constrained random walks[J]. Machine Learning, 2010, 81(1): 53-67.
|
7 |
LIN X, LIANG Y, GIUNCHIGLIA F, et al. Relation path embedding in knowledge graphs[J]. Neural Computing and Applications, 2019, 31(9): 5629-5639.
|
8 |
YAO L, MAO C, LUO Y. KG-BERT: BERT for knowledge graph completion[EB/OL]. [2023-12-02]. .
|
9 |
DEVLIN J, CHANG M W, LEE K. BERT: pre-training of deep bidirectional Transformers for language understanding[C]// Proceedings of the 2019 Annual Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers). Stroudsburg: ACL, 2019: 4171-4186.
|
10 |
ZHA H, CHEN Z, YAN X. Inductive relation prediction by BERT[C]// Proceedings of the 36th AAAI Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2022: 5923-5931.
|
11 |
TERU K K, DENIS E G, HAMILTON W L. Inductive relation prediction by subgraph reasoning[C]// Proceedings of the 37th International Conference on Machine Learning. New York: JMLR.org, 2020: 9448-9457.
|
12 |
CHEN J, HE H, WU F, et al. Topology-aware correlations between relations for inductive link prediction in knowledge graphs[C]// Proceedings of the 35th AAAI Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2021: 6271-6278.
|
13 |
MAI S, ZHENG S, YANG Y, et al. Communicative message passing for inductive relation reasoning[C]// Proceedings of the 35th AAAI Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2021: 4294-4302.
|
14 |
WANG H, REN H, LESKOVEC J. Relational message passing for knowledge graph completion[C]// Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining. New York: ACM, 2021: 1697-1707.
|
15 |
LIN Q, LIU J, XU F, et al. Incorporating context graph with logical reasoning for inductive relation prediction[C]// Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2022: 893-903.
|
16 |
BRONSTEIN M M, BRUNA J, LeCUN Y, et al. Geometric deep learning: going beyond Euclidean data[J]. IEEE Signal Processing Magazine, 2017, 34(4): 18-42.
|
17 |
HAMILTON W L, YING R, LESKOVEC J. Inductive representation learning on large graphs[C]// Proceedings of the 31st International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2017: 1025-1035.
|
18 |
KWAK H, JUNG H B K. Subgraph representation learning with hard negative samples for inductive link prediction[C]// Proceedings of the 2022 IEEE International Conference on Acoustics, Speech and Signal Processing. Piscataway: IEEE, 2022: 4768-4772.
|
19 |
ZHENG S, MAI S, SUN Y, et al. Subgraph-aware few-shot inductive link prediction via meta-learning[J]. IEEE Transactions on Knowledge and Data Engineering, 2023, 35(6): 6512-6517.
|
20 |
SOCHER R, CHEN D, MANNING C D, et al. Reasoning with neural tensor networks for knowledge base completion[C]// Proceedings of the 26th International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2013: 926-934.
|
21 |
DAZA D, COCHEZ M, GROTH P. Inductive entity representations from text via link prediction[C]// Proceedings of the 2021 Web Conference. New York: ACM, 2021: 798-808.
|
22 |
WANG L, ZHAO W, WEI Z, et al. SimKGC: simple contrastive knowledge graph completion with pre-trained language models[C]// Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Stroudsburg: ACL, 2022: 4281-4294.
|
23 |
GESESE G A, SACK H, ALAM M. RAILD: towards leveraging relation features for inductive link prediction in knowledge graphs[C]// Proceedings of the 11th International Joint Conference on Knowledge Graphs. New York: ACM, 2022: 82-90.
|
24 |
TOUTANOVA K, CHEN D. Observed versus latent features for knowledge base and text inference[C]// Proceedings of the 3rd Workshop on Continuous Vector Space Models and Their Compositionality. Stroudsburg: ACL, 2015: 57-66.
|
25 |
XIONG W, HOANG T, WANG W Y. DeepPath: a reinforcement learning method for knowledge graph reasoning[C]// Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: ACL, 2017: 564-573.
|
26 |
MEILICKE C, FINK M, WANG Y, et al. Fine-grained evaluation of rule-and embedding-based systems for knowledge graph completion[C]// Proceedings of the 2018 International Semantic Web Conference, LNCS 11136. Cham: Springer, 2018: 3-20.
|
27 |
YANG F, YANG Z, COHEN W W. Differentiable learning of logical rules for knowledge base reasoning[C]// Proceedings of the 31st International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2017: 2316-2325.
|
28 |
SADEGHIAN A, ARMANDPOUR M, DING P, et al. DRUM: end-to-end differentiable rule mining on knowledge graphs[C]// Proceedings of the 33rd International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2019: 15347-15357.
|