| 1 | 徐增林,盛泳潘,贺丽荣,等. 知识图谱技术综述[J]. 电子科技大学学报, 2016, 45(4): 589-606. | 
																													
																						|  | XU Z L, SHENG Y P, HE L R, et al. Review on knowledge graph techniques[J]. Journal of University of Electronic Science and Technology of China, 2016, 45(4): 589-606. | 
																													
																						| 2 | 黄恒琪,于娟,廖晓,等. 知识图谱研究综述[J]. 计算机系统应用, 2019, 28(6): 1-12. | 
																													
																						|  | HUANG H Q, YU J, LIAO X, et al. Review on knowledge graphs[J]. Computer Systems and Applications, 2019, 28(6): 1-12. | 
																													
																						| 3 | WANG Z, ZHANG J, FENG J, et al. Knowledge graph embedding by translating on hyperplanes[C]// Proceedings of the 28th AAAI Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2014: 1112-1119. | 
																													
																						| 4 | TROUILLON T, WEBLBL J, RIEDEL S, et al. Complex embeddings for simple link prediction[C]// Proceedings of the 33rd International Conference on Machine Learning. New York: JMLR.org, 2016: 2071-2080. | 
																													
																						| 5 | DETTMERS T, MINERVINI P, STENETORP P, et al. Convolutional 2D knowledge graph embeddings[C]// Proceedings of the 32nd AAAI Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2018: 1811-1818. | 
																													
																						| 6 | LAO N, COHEN W W. Relational retrieval using a combination of path-constrained random walks[J]. Machine Learning, 2010, 81(1): 53-67. | 
																													
																						| 7 | LIN X, LIANG Y, GIUNCHIGLIA F, et al. Relation path embedding in knowledge graphs[J]. Neural Computing and Applications, 2019, 31(9): 5629-5639. | 
																													
																						| 8 | YAO L, MAO C, LUO Y. KG-BERT: BERT for knowledge graph completion[EB/OL]. [2023-12-02]. . | 
																													
																						| 9 | DEVLIN J, CHANG M W, LEE K. BERT: pre-training of deep bidirectional Transformers for language understanding[C]// Proceedings of the 2019 Annual Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers). Stroudsburg: ACL, 2019: 4171-4186. | 
																													
																						| 10 | ZHA H, CHEN Z, YAN X. Inductive relation prediction by BERT[C]// Proceedings of the 36th AAAI Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2022: 5923-5931. | 
																													
																						| 11 | TERU K K, DENIS E G, HAMILTON W L. Inductive relation prediction by subgraph reasoning[C]// Proceedings of the 37th International Conference on Machine Learning. New York: JMLR.org, 2020: 9448-9457. | 
																													
																						| 12 | CHEN J, HE H, WU F, et al. Topology-aware correlations between relations for inductive link prediction in knowledge graphs[C]// Proceedings of the 35th AAAI Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2021: 6271-6278. | 
																													
																						| 13 | MAI S, ZHENG S, YANG Y, et al. Communicative message passing for inductive relation reasoning[C]// Proceedings of the 35th AAAI Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2021: 4294-4302. | 
																													
																						| 14 | WANG H, REN H, LESKOVEC J. Relational message passing for knowledge graph completion[C]// Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining. New York: ACM, 2021: 1697-1707. | 
																													
																						| 15 | LIN Q, LIU J, XU F, et al. Incorporating context graph with logical reasoning for inductive relation prediction[C]// Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2022: 893-903. | 
																													
																						| 16 | BRONSTEIN M M, BRUNA J, LeCUN Y, et al. Geometric deep learning: going beyond Euclidean data[J]. IEEE Signal Processing Magazine, 2017, 34(4): 18-42. | 
																													
																						| 17 | HAMILTON W L, YING R, LESKOVEC J. Inductive representation learning on large graphs[C]// Proceedings of the 31st International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2017: 1025-1035. | 
																													
																						| 18 | KWAK H, JUNG H B K. Subgraph representation learning with hard negative samples for inductive link prediction[C]// Proceedings of the 2022 IEEE International Conference on Acoustics, Speech and Signal Processing. Piscataway: IEEE, 2022: 4768-4772. | 
																													
																						| 19 | ZHENG S, MAI S, SUN Y, et al. Subgraph-aware few-shot inductive link prediction via meta-learning[J]. IEEE Transactions on Knowledge and Data Engineering, 2023, 35(6): 6512-6517. | 
																													
																						| 20 | SOCHER R, CHEN D, MANNING C D, et al. Reasoning with neural tensor networks for knowledge base completion[C]// Proceedings of the 26th International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2013: 926-934. | 
																													
																						| 21 | DAZA D, COCHEZ M, GROTH P. Inductive entity representations from text via link prediction[C]// Proceedings of the 2021 Web Conference. New York: ACM, 2021: 798-808. | 
																													
																						| 22 | WANG L, ZHAO W, WEI Z, et al. SimKGC: simple contrastive knowledge graph completion with pre-trained language models[C]// Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Stroudsburg: ACL, 2022: 4281-4294. | 
																													
																						| 23 | GESESE G A, SACK H, ALAM M. RAILD: towards leveraging relation features for inductive link prediction in knowledge graphs[C]// Proceedings of the 11th International Joint Conference on Knowledge Graphs. New York: ACM, 2022: 82-90. | 
																													
																						| 24 | TOUTANOVA K, CHEN D. Observed versus latent features for knowledge base and text inference[C]// Proceedings of the 3rd Workshop on Continuous Vector Space Models and Their Compositionality. Stroudsburg: ACL, 2015: 57-66. | 
																													
																						| 25 | XIONG W, HOANG T, WANG W Y. DeepPath: a reinforcement learning method for knowledge graph reasoning[C]// Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: ACL, 2017: 564-573. | 
																													
																						| 26 | MEILICKE C, FINK M, WANG Y, et al. Fine-grained evaluation of rule-and embedding-based systems for knowledge graph completion[C]// Proceedings of the 2018 International Semantic Web Conference, LNCS 11136. Cham: Springer, 2018: 3-20. | 
																													
																						| 27 | YANG F, YANG Z, COHEN W W. Differentiable learning of logical rules for knowledge base reasoning[C]// Proceedings of the 31st International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2017: 2316-2325. | 
																													
																						| 28 | SADEGHIAN A, ARMANDPOUR M, DING P, et al. DRUM: end-to-end differentiable rule mining on knowledge graphs[C]// Proceedings of the 33rd International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2019: 15347-15357. |