为降低多机器人在动态环境下路径规划的阻塞率,基于深度强化学习方法框架Actor-Critic,设计一种基于请求与应答通信机制和局部注意力机制的分布式深度强化学习路径规划方法(DCAMAPF)。在Actor网络,基于请求与应答通信机制,每个机器人请求视野内的其他机器人的局部观测信息和动作信息,进而规划出协同的动作策略。在Critic网络,每个机器人基于局部注意力机制将注意力权重动态地分配到在视野内成功应答的其他机器人局部观测和动作信息上。实验结果表明,与传统动态路径规划方法D* Lite、最新的分布式强化学习方法MAPPER和最新的集中式强化学习方法AB-MAPPER相比,DCAMAPF在离散初始化环境,阻塞率均值均约降低了6.91、4.97、3.56个百分点;在集中初始化环境下能更高效地避免发生阻塞,阻塞率均值均约降低了15.86、11.71、5.54个百分点,并减少占用的计算缓存。所提方法确保了路径规划的效率,适用于求解不同动态环境下的多机器人路径规划任务。
针对多智能体在大型仓储环境中进行路径规划时,现有算法有智能体易陷入拥堵区域和耗时长的问题,提出一种改良的基于冲突搜索(CBS)算法。首先,优化现有单一的仓储环境建模方式,在易解决路径冲突的传统的栅格化建模的基础上,提出栅格-热力图的混合建模方式,并通过热力图定位仓储中的拥堵区域,从而解决多智能体易陷入拥堵区域的问题;其次,通过改良的CBS算法,快速求解大型仓储环境下的多智能体路径规划(MAPF)问题;最后,提出基于热力图的显示估计冲突搜索(HM-EECBS)算法。实验结果表明,在warehouse-20-40-10-2-2大型地图集上,当智能体数为500时,相较于显示估计冲突搜索(EECBS)算法和懒惰添加约束的MAPF算法(LaCAM)算法:HM-EECBS算法的求解时间分别减少了约88%和73%;当仓储中存在5%、10%的区域拥堵时,HM-EECBS算法的成功率分别提高了约49%、20%,这表明所提算法适用于解决大规模且拥堵的仓储物流环境下的MAPF问题。
卷积神经网络(CNN)因辨识度高、易于理解、可学习性强而被用于图像取证,但它固有的感受野增加缓慢、忽略长端依赖性、计算量庞大等缺点导致深度学习算法的精度与轻量化部署效果并不理想,不适用于以轻量化形式实现图像篡改定位的场景。为解决上述问题,提出一种基于轻量化网络的图像复制-粘贴篡改检测算法——LKA-EfficientNet(Large Kernel Attention EfficientNet)。LKA-EfficientNet具有长端依赖性和全局感受野的特性,且优化了EfficientNetV2的参数量,提高了图像篡改定位速度和精度。首先,将输入图像通过基于大核注意力(LKA)卷积的基干网络进行处理,得到候选特征图;随后,使用不同尺寸的特征图构建特征金字塔进行特征匹配;最后,将特征匹配后的特征图进行融合以定位图像篡改区域;此外,LKA-EfficientNet使用三元组交叉熵损失函数进一步提升了算法定位篡改图像的精度。实验结果表明,LKA-EfficientNet与同类型的Dense-InceptionNet算法相比,不仅能够降低29.54%的浮点运算量,而且F1分数也提高了4.88%,验证了LKA-EfficientNet可以在保持高检测性能的同时降低计算量。
针对阻塞流水车间调度问题(BFSP),提出了一种新颖的量子差分进化(NQDE)算法,用于最小化最大完工时间。该算法将量子进化算法(QEA)与差分进化(DE)相结合,设计一种新颖的量子旋转机制控制种群进化方向,增强种群多样性;采用高效的基于变邻域搜索的量子进化算法(QEA-VNS)协同进化策略增强算法的全局搜索能力,进一步提高解的质量。基于Taillard's benchmark实例仿真,结果表明,所提算法在最优解数量上明显高于目前较好的启发式算法——INEH,改进了110个实例中64个实例的当前最优解;在性能上也优于目前有效的元启发式算法——新型蛙跳算法(NMSFLA)和混合量子差分进化(HQDE),产生最优解的平均百分比偏差(ARPD)均下降约6%。NQDE算法适合大规模阻塞流水车间调度问题。
在对文本扫描输入的过程中,文本图像不可避免地会发生倾斜,倾斜校正将为图文分割、文字识别等后续处理工作创造良好的条件。提出了一种基于Hough变换的检测图像倾斜度的方法,为了克服Hough变换计算量大的缺点,该方法首先选取局部代表性子区域并提取其图像水平边缘,然后对提取的水平边缘进行两级Hough变换,从而实现了准确性与快速性的很好结合。