Toggle navigation
首页
期刊介绍
期刊简介
历史沿革
收录情况
获奖情况
引用指标
编委会
期刊在线
文章推荐
过刊浏览
专辑专刊
下载排行
阅读排行
投稿指南
组稿方向
投稿须知
论文模板
常见问题
署名变更申请
单位变更申请
版权转让协议
中图分类号
引言书写要求
参考文献著录格式
插图与表格规范
英文摘要书写要求
收费标准
学术诚信
联系我们
编辑部联系方式
位置示意图
期刊订阅办法
广告合作
English
期刊
出版年
关键词
结果中检索
(((王宝会[Author]) AND 1[Journal]) AND year[Order])
AND
OR
NOT
文题
作者
作者单位
关键词
摘要
分类号
DOI
Please wait a minute...
选择:
导出引用
EndNote
Ris
BibTeX
显示/隐藏图片
Select
1.
基于多尺度特征提取的交通模式识别算法
刘世泽, 秦艳君, 王晨星, 高存远, 罗海勇, 赵方, 王宝会
计算机应用 2021, 41 (
6
): 1573-1580. DOI:
10.11772/j.issn.1001-9081.2020121915
摘要
(
436
)
PDF
(1478KB)(
605
)
可视化
收藏
针对普适交通模式的场景感知功耗高、场景复杂的问题,提出一种融合残差网络(ResNet)和带孔卷积的交通模式识别算法。首先,使用快速傅里叶变换(FFT)将一维传感器数据转换为二维频谱图像;然后,使用主成分分析(PCA)算法对频谱图像降采样;最后,使用ResNet挖掘交通模式的局部特征,使用带孔卷积挖掘交通模式的全局特征,从而实现对八种交通模式进行识别。与决策树、随机森林、AlexNet等八种算法在实验中的对比评估结果显示,融合ResNet和带孔卷积的交通模式识别算法在静止、走路、跑步等八类交通模式上均有最高准确率。该算法具有良好识别精度和鲁棒性。
参考文献
|
相关文章
|
多维度评价
Select
2.
基于深度残差长短记忆网络交通流量预测算法
刘世泽, 秦艳君, 王晨星, 苏琳, 柯其学, 罗海勇, 孙艺, 王宝会
计算机应用 2021, 41 (
6
): 1566-1572. DOI:
10.11772/j.issn.1001-9081.2020121928
摘要
(
526
)
PDF
(1116KB)(
613
)
可视化
收藏
针对多步交通流量预测任务中时间空间特征提取效果不佳和预测未来时间交通流量精度低的问题,提出一种基于长短时记忆(LSTM)网络、卷积残差网络和注意力机制的融合模型。首先,利用一种基于编解码器的架构,通过在编解码器中加入LSTM网络来挖掘不同尺度的时间域特征;其次,构建基于注意力机制挤压激励(SE)模块的卷积残差网络嵌入到LSTM网络结构中,从而挖掘交通流量数据中的空间域特征;最后,将编码器中获得的隐状态下的信息输入到解码器中,实现高精度多步交通流量的预测。基于真实交通数据进行实验测试和分析,实验结果表明,相较于原始的基于图卷积的模型,所提模型在北京和纽约两个交通流量公开数据集上的均方根误差(RMSE)分别获得了1.622和0.08的下降。所提模型能够高效且精确地对交通流量作出预测。
参考文献
|
相关文章
|
多维度评价
Select
3.
基于残差时域注意力神经网络的交通模式识别算法
刘世泽, 朱奕达, 陈润泽, 罗海勇, 赵方, 孙艺, 王宝会
计算机应用 2021, 41 (
6
): 1557-1565. DOI:
10.11772/j.issn.1001-9081.2020121953
摘要
(
353
)
PDF
(1075KB)(
736
)
可视化
收藏
交通模式识别是用户行为识别中的一个重要分支,其目的是对用户所处的交通模式进行准确判断。针对现代智慧城市交通系统对在移动设备环境下精准感知用户交通模式的需求,提出了一种基于残差时域注意力神经网络的交通模式识别算法。首先,通过具有较强局部特征提取能力的残差网络提取传感器时序中的局部特征;然后,采用基于通道的注意力机制对不同传感器特征进行重校准,并针对不同传感器的数据异构性进行注意力重校准;最后,利用具有更广感受野的时域卷积网络(TCN)提取传感器时序中的全局特征。采用数据丰富度较高的宏达通讯(HTC)交通模式识别数据集来对已有的交通模式识别算法和所提出的残差时域注意力模型进行评估,实验结果表明,所提出的残差时域注意力模型在对现代移动嵌入式设备的计算开销友好的前提下具有高达96.07%的准确率,且对单一类别均具有高于90%的召回率与精确率,验证了该模型的准确性与鲁棒性。所提模型可以作为一种支持移动智能终端运算的交通模式识别应用于智能交通出行、智慧城市等领域。
参考文献
|
相关文章
|
多维度评价