[1] WILLIAS B M,HOEL L A. Modeling and forecasting vehicular traffic flow as a seasonal ARIMA process:theoretical basis and empirical results[J]. Journal of Transportation Engineering,2003, 129(6):664-672. [2] CHAN K Y,DILLON T S,SINGH J,et al. Neural-network-based models for short-term traffic flow forecasting using a hybrid exponential smoothing and Levenberg-Marquardt algorithm[J]. IEEE Transactions on Intelligent Transportation Systems,2012,13(2):644-654. [3] DU B,PENG H,WANG S,et al. Deep Irregular convolutional residual LSTM for urban traffic passenger flows prediction[J]. IEEE Transactions on Intelligent Transportation Systems,2020,21(3):972-985. [4] ZHENG M,LI T,ZHU R,et al. Traffic accident's severity prediction:a deep learning approach-based CNN network[J]. IEEE Access,2019,7:39897-39910. [5] YU H, WU Z, WANG S, et al. Spatiotemporal recurrent convolutional networks for traffic prediction in transportation networks[J]. Sensors,2017,17(7):Article No. 1501. [6] ZANG D, WANG D, CHENG J, et al. Traffic parameters prediction using a three-channel convolutional neural network[C]//Proceedings of the 2017 International Conference on Intelligence Science,IFIPAICT 510. Cham:Springer,2017:363-371. [7] MA X,DAI Z,HE Z,et al. Learning traffic as images:a deep convolutional neural network for large-scale transportation network speed prediction[J]. Sensors,2017,17(4):Article No. 818. [8] KIM Y,WANG P,MIHAYLOVA L. Structural recurrent neural network for traffic speed prediction[C]//Proceedings of the 2019 IEEE International Conference on Acoustics,Speech and Signal Processing. Piscataway:IEEE,2019:5207-5211. [9] ZHAO J,QU H,ZHAO J,et al. Towards traffic matrix prediction with LSTM recurrent neural networks[J]. Electronics Letters, 2018,54(9):566-568. [10] CHEN H, HUANG S, CHIANG D, et al. Improved neural machine translation with a syntax-aware encoder and decoder[C]//Proceedings of the 2017 55th Annual Meeting of the Association for Computational Linguistics. Stroudsburg:ACL,2017:1936-1945. [11] ZHANG J,ZHENG Y,QI D,et al. DNN-based prediction model for spatio-temporal data[C]//Proceedings of the 2016 24th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems. New York:ACM,2016:Article No. 92. [12] ZHANG,J,ZHENG Y,QI D. Deep spatio-temporal residual networks for citywide crowd flows prediction[C]//Proceedings of the 201731st AAAI Conference on Artificial Intelligence. Palo Alto:AAAI Press,2017:1655-1661 [13] MA X, YU H, WANG Y, et al. Large-scale transportation network congestion evolution prediction using deep learning theory[J]. PLoS ONE,2015,10(3):No. e0119044. [14] 贾兴无. 基于网约车数据的居民出行需求特征分析及需求预测[J]. 交通工程, 2018, 18(5):39-45.(JIA X W. Characteristics analysis and demand prediction of travel demand based on online car-hailing data[J]. Journal of Transportation Engineering, 2018,18(5):39-45.) [15] 李会云. 基于Geotagged Photo数据集的行为识别研究与应用[D]. 沈阳:东北大学, 2015:31-39.(LI H Y. Research and application of behavior recognition based on Geotagged Photo dataset[D]. Shenyang:Northeastern University,2015:31-39.) [16] 冯宁. 基于时空图卷积网络的高速公路流量预测方法研究[D]. 北京:北京交通大学, 2019:44-51.(FENG N. Research on highway traffic forecasting based on spatial-temporal graph convolutional network[D]. Beijing:Beijing Jiaotong University, 2019:44-51.) [17] NIE Y,HAN Y,HUANG J,et al. Attention-based encoderdecoder model for answer selection in question answering[J]. Frontiers of Information Technology and Electronic Engineering, 2017,18(4):535-544. [18] WANG Y,VAN DE WEIJER J,HERRANZ L. Mix and match networks:encoder-decoder alignment for zero-pair image translation[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE, 2018:5467-5476. [19] LIPPI M,BERTINI M,FRASCONI P. Short-term traffic flow forecasting:an experimental comparison of time-series analysis and supervised learning[J]. IEEE Transactions on Intelligent Transportation Systems,2013,14(2):871-882. [20] OKUTANI I,STEPHANEDES Y J. Dynamic prediction of traffic volume through Kalman filtering theory[J]. Transportation Research Part B:Methodological,1984,18(1):1-11. [21] VAN DER VOORT M, DOUGHERTY M, WATSON S. Combining Kohonen maps with ARIMA time series models to forecast traffic flow[J]. Transportation Research Part C:Emerging Technologies,1996,4(5):307-318. [22] KIM E Y. MRF model based real-time traffic flow prediction with support vector regression[J]. Electronics Letters,2017,53(4):243-245. [23] YAO H,WU F,KE J,et al. Deep multi-view spatial-temporal network for taxi demand prediction[C]//Proceedings of the 201832nd AAAI Conference on Artificial Intelligence. Palo Alto:AAAI Press,2018:2588-2595. |