[1] YU M C,YU T,WANG S C,et al. Big data small footprint:the design of a low-power classifier for detecting transportation modes[J]. Proceedings of the VLDB Endowment,2014,7(13):1429-1440. [2] WANG L, GJORESKI H, CILIBERTO M, et al. Enabling reproducible research in sensor-based transportation mode recognition with the Sussex-Huawei dataset[J]. IEEE Access, 2019,7:10870-10891. [3] ZHENG Y, XIE X, MA W. GeoLife:a collaborative social networking service among user,location and trajectory[EB/OL].[2020-03-30]. http://sites.computer.org/debull/A10june/geolife.pdf. [4] YANG H F,DILLON T S,CHEN Y P P. Optimized structure of the traffic flow forecasting model with a deep learning approach[J]. IEEE Transactions on Neural Networks and Learning Systems, 2017,28(10):2371-2381. [5] LV Y,DUAN Y,KANG W,et al. Traffic flow prediction with big data:a deep learning approach[J]. IEEE Transactions on Intelligent Transportation Systems,2015,16(2):865-873. [6] 汪磊, 左忠义, 傅军豪. 基于SVM的出行方式特征分析和识别研究[J]. 交通运输系统工程与信息, 2014, 14(3):70-75, 84. (WANG L,ZUO Z Y,FU J H. Travel mode character analysis and recognition based on SVM[J]. Journal of Transportation Systems Engineering and Information Technology, 2014, 14(3):70-75,84.) [7] ZHENG Y,ZHANG L,XIE X,et al. Mining correlation between locations using human location history[C]//Proceedings of the 2009 17th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems. New York:ACM, 2009:472-475. [8] GHOSE A,LI B,LIU S. Mobile targeting using customer trajectory patterns[J]. Management Science,2019,65(11):4951-5448. [9] 熊苏生. 基于改进LightGBM的交通模式识别算法[J]. 计算机与现代化,2018(10):68-73,126. (XIONG S S. Identifying transportation mode based on improved LightGBM algorithm[J]. Computer and Modernization,2018(10):68-73,126.) [10] ZHENG L,LI S,ZHU C,et al. Application of IndRNN for human activity recognition:the Sussex-Huawei locomotion-transportation challenge[C]//Adjunct Proceedings of the 2019 ACM International Joint Conference on Pervasive and Ubiquitous Computing/2019 ACM International Symposium on Wearable Computers. New York:ACM,2019:869-872. [11] ZHU Y,ZHAO F,CHEN R. Applying 1D sensor DenseNet to Sussex-Huawei locomotion-transportation recognition challenge[C]//Adjunct Proceedings of the 2019 ACM International Joint Conference on Pervasive and Ubiquitous Computing/2019 ACM International Symposium on Wearable Computers. New York:ACM,2019:873-877. [12] CHOI J H,LEE J S. EmbraceNet for activity:a deep multimodal fusion architecture for activity recognition[C]//Adjunct Proceedings of the 2019 ACM International Joint Conference on Pervasive and Ubiquitous Computing/2019 ACM International Symposium on Wearable Computers. New York:ACM,2019:693-698. [13] BALABKA D. Semi-supervised learning for human activity recognition using adversarial autoencoders[C]//Adjunct Proceedings of the 2019 ACM International Joint Conference on Pervasive and Ubiquitous Computing/2019 ACM International Symposium on Wearable Computers. New York:ACM,2019:685-688. [14] FRIEDRICH B,CAUCHI B,HEIN A,et al. Transportation mode classification from smartphone sensors via a long-short-termmemory network[C]//Adjunct Proceedings of the 2019 ACM International Joint Conference on Pervasive and Ubiquitous Computing/2019 ACM International Symposium on Wearable Computers. New York:ACM,2019:709-713. [15] CARPINETI C,LOMONACO V,BEDOGNI L,et al. Custom dual transportation mode detection by smartphone devices exploiting sensor diversity[C]//Proceedings of the 2018 IEEE International Conference on Pervasive Computing and Communications Workshops. Piscataway:IEEE,2018:367-372. [16] WIDHALM P,LEODOLTER M,BRÄNDLE N. Ensemble-based domain adaptation for transport mode recognition with mobile sensors[C]//Adjunct Proceedings of the 2019 ACM International Joint Conference on Pervasive and Ubiquitous Computing/2019 ACM International Symposium on Wearable Computers. New York:ACM. 2019:857-861. [17] LU H,PINAROC M,LV M,et al. Locomotion recognition using XGBoost and neural network ensemble[C]//Adjunct Proceedings of the 2019 ACM International Joint Conference on Pervasive and Ubiquitous Computing/2019 ACM International Symposium on Wearable Computers. New York:ACM,2019:757-760. [18] AHMED M,ANTAR A D,HOSSAIN T,et al. POIDEN:position and orientation independent deep ensemble network for the classification of locomotion and transportation modes[C]//Adjunct Proceedings of the 2019 ACM International Joint Conference on Pervasive and Ubiquitous Computing/2019 ACM International Symposium on Wearable Computers. New York:ACM,2019:674-679. [19] COROAMĂ V C, TÜRK C, MATTERN F. Exploring the usefulness of Bluetooth and WiFi proximity for transportation mode recognition[C]//Adjunct Proceedings of the 2019 ACM International Joint Conference on Pervasive and Ubiquitous Computing/2019 ACM International Symposium on Wearable Computers. New York:ACM,2019:37-40. [20] STENNETH L,WOLFSON O,YU P S,et al. Transportation mode detection using mobile phones and GIS information[C]//Proceedings of the 2011 19th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems. New York:ACM,2011:54-63. [21] ALWAN A,FREY V,LAN G L. Orange labs contribution to the Sussex-Huawei locomotion-transportation recognition challenge[C]//Adjunct Proceedings of the 2019 ACM International Joint Conference on Pervasive and Ubiquitous Computing/2019 ACM International Symposium on Wearable Computers. New York:ACM,2019:680-684. [22] SU X, CACERES H, TONG H, et al. Online travel mode identification using smartphones with battery saving considerations[J]. IEEE Transactions on Intelligent Transportation Systems, 2016,17(10):2921-2934. [23] GJORESKI H,CILIBERTO M,WANG L,et al. The university of Sussex-Huawei locomotion and transportation dataset for multimodal analytics with mobile devices[J]. IEEE Access, 2018,6:42592-42604. [24] REDDY S,MUN M,BURKE J,et al. Using mobile phones to determine transportation modes[J]. ACM Transactions on Sensor Networks,2010,6(2):No. 13. [25] HUANG G,LIU Z,MAATEN L V D,et al. Densely connected convolutional networks[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE,2017:2261-2269. [26] BAI S,KOLTER J Z,KOLTUN V. An empirical evaluation of generic convolutional and recurrent networks for sequence modeling[EB/OL].[2021-03-12]. http://arxiv.org/pdf/1803.01271.pdf. [27] HU J,SHEN L,SUN G. Squeeze-and-excitation networks[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE,2018:7132-7141. [28] REDDI S J,KALE S,KUMAR S. On the convergence of ADAM and beyond[EB/OL].[2021-03-12]. http://www.sanjivk.com/AdamConvergence_ICLR.pdf. |