无数据模型提取攻击是基于攻击者在进行攻击时所需的训练数据信息未知的情况下提出的一类机器学习安全问题。针对无数据模型提取攻击在图神经网络(GNN)领域的研究缺乏,提出分别用GNN可解释性方法GNNExplainer和图数据增强方法GAUG-M优化图节点特征信息和边信息生成所需图数据,最终提取GNN模型的方法。首先,利用GNNExplainer方法对目标模型的响应结果进行可解释性分析得到重要的图节点特征信息;其次,通过对重要的图节点特征加权,对非重要图节点特征降权,实现图节点特征信息的整体优化;然后,使用图形自动编码器作为边信息预测模块,根据优化后的图节点特征得到节点与节点之间的连接概率;最后,根据概率增加或者删减相应边优化边信息。实验采用5个图数据集训练的3种GNN模型架构作为目标模型提取攻击,得到的替代模型达到了73%~87%的节点分类任务准确性和76%~89%的与目标模型性能的一致性,验证了所提方法的有效性。
针对工业控制系统(ICS)数据匮乏、工控入侵检测系统对未知攻击检测效果差的问题,提出一种基于生成对抗迁移学习网络的工控系统未知攻击入侵检测方法(GATL)。首先,引入因果推理和跨域特征映射关系对数据进行重构,提高数据的可理解性和可靠性;其次,由于源域和目标域数据不平衡,采用基于域混淆的条件生成对抗网络(GAN)增加目标域数据集的规模和多样性;最后,通过域对抗迁移学习融合数据的差异性、共性,提高工控入侵检测模型对目标域未知攻击的检测和泛化能力。实验结果表明,在工控网络标准数据集上,GATL在保持已知攻击高检测率的情况下,对目标域的未知攻击检测的F1-score平均为81.59%,相较于动态对抗适应网络(DAAN)和信息增强的对抗域自适应(IADA)方法分别提升了63.21和64.04个百分点。
为解决在入侵检测场景中引入联邦学习技术后,由于节点间存在流量数据非独立同分布(non-iid)现象而导致模型难以聚合并得到高识别率的问题,构造了一种高效联邦学习算法(H-E-Fed),并基于该算法构建了对应的入侵检测模型。首先,协调方设计针对流量数据的全局模型,并下发至入侵检测节点间进行模型训练;然后,协调方收集本地模型,并对节点间本地模型的协方差矩阵评估偏度,以衡量节点间模型的相关性,从而重新分配模型聚合参数,并生成新的全局模型;最后,协调方与节点多轮交互,直至全局模型收敛。实验结果表明,与基于联邦平均(FedAvg)算法和FedProx算法的模型相比,基于高效联邦学习算法的入侵检测模型在节点间产生数据non-iid现象时的通信消耗更低;且在KDDCup99数据集和CICIDS2017数据集上,与基线模型相比,准确率分别提升了10.39%、8.14%与4.40%、5.98%。
数据投毒攻击中的后门攻击方式的攻击者通过将带有隐藏触发器的样本插入训练集中来操纵训练数据的分布,从而使测试样本错误分类以达到改变模型行为和降低模型性能的目的。而现有触发器的弊端是样本无关性,即无论采用什么触发模式,不同有毒样本都包含相同触发器。因此将图像隐写技术与深度卷积对抗网络(DCGAN)结合,提出一种基于样本的攻击方法来根据灰度共生矩阵生成图像纹理特征图,利用图像隐写技术将目标标签字符嵌入纹理特征图中作为触发器,并将带有触发器的纹理特征图和干净样本拼接成中毒样本,再通过DCGAN生成大量带有触发器的假图。在训练集样本中将原中毒样本以及DCGAN生成的假图混合起来,最终达到投毒者注入少量的中毒样本后,在拥有较高的攻击率同时,保证触发器的有效性、可持续性和隐藏性的效果。实验结果表明,该方法避免了样本无关性的弊端,并且模型精确度达到93.78%,在30%的中毒样本比例下,数据预处理、剪枝防御以及AUROR防御方法对攻击成功率的影响达到最小,攻击成功率可达到56%左右。
针对现有对抗样本生成方法需要大量访问目标模型,导致攻击效果较差的问题,提出了基于BERT (Bidirectional Encoder Representations from Transformers)模型的文本对抗样本生成方法(TAEGM)。首先采用注意力机制,在不访问目标模型的情况下,定位显著影响分类结果的关键单词;其次通过BERT模型对关键单词进行单词级扰动,从而生成候选样本;最后对候选样本进行聚类,并从对分类结果影响更大的簇中选择对抗样本。在Yelp Reviews、AG News和IMDB Review数据集上的实验结果表明,相较于攻击成功率(SR)次优的对抗样本生成方法CLARE(ContextuaLized AdversaRial Example generation model),TAEGM在保证对抗攻击SR的前提下,对目标模型的访问次数(QC)平均减少了62.3%,时间平均减少了68.6%。在此基础之上,进一步的实验结果验证了TAEGM生成的对抗样本不仅具有很好的迁移性,还可以通过对抗训练提升模型的鲁棒性。
针对深度神经网络(DNN)中的可解释性导致模型信息泄露的问题,证明了在白盒环境下利用Grad-CAM解释方法产生对抗样本的可行性,并提出一种无目标的黑盒攻击算法——动态遗传算法。该算法首先根据解释区域与扰动像素位置的变化关系改进适应度函数,然后通过多轮的遗传算法在不断减少扰动值的同时递增扰动像素的数量,而且每一轮的结果坐标集会在下一轮的迭代中保留使用,直到在未超过扰动边界的情况下扰动像素集合使预测标签发生翻转。在实验部分,所提算法在AlexNet、VGG-19、ResNet-50和SqueezeNet模型下的攻击成功率平均为92.88%,与One pixel算法相比,虽然增加了8%的运行时间,但成功率提高了16.53个百分点。此外,该算法能够在更短的运行时间内,使成功率高于Ada-FGSM算法3.18个百分点,高于PPBA算法8.63个百分点,并且与Boundary-attack算法的成功率相差不大。结果表明基于解释方法的动态遗传算法能有效进行对抗攻击。
特征选择是从原始数据集中去除无关的特征并选择良好的特征子集,可以避免维数灾难和提高学习算法的性能。为解决已选特征和类别动态变化(DCSF)算法在特征选择过程中只考虑已选特征和类别之间动态变化的信息量,而忽略候选特征和已选特征的交互相关性的问题,提出了一种基于动态相关性的特征选择(DRFS)算法。该算法采用条件互信息度量已选特征和类别的条件相关性,并采用交互信息度量候选特征和已选特征发挥的协同作用,从而选择相关特征并且去除冗余特征以获得优良特征子集。仿真实验表明,与现有算法相比,所提算法能有效地提升特征选择的分类准确率。
针对物联网(IoT)服务描述文本篇幅较短、特征稀疏,直接采用传统的主题模型对IoT服务建模得到的聚类效果不佳,从而导致无法发现最佳服务的问题,提出了一种基于BTM的IoT服务发现方法。该方法首先利用BTM挖掘现有IoT服务的隐含主题,并通过全局主题分布和主题-词分布计算推理得到服务文档-主题概率分布;其次利用K-means算法对服务进行聚类,并返回服务请求的最佳匹配结果。实验结果分析表明,该方法能够有效提高IoT服务的聚类效果,从而得到匹配的最佳服务。与现有的HDP(Hierarchical Dirichlet Process)、基于K-means的隐狄利克雷分配(LDA-K)等方法相比,该方法进行最佳服务发现的准确度(Precision)和归一化折损累积增益(NDCG)均有一定幅度的提高。
作者主题模型被广泛应用于科技文献中作者的兴趣发现。针对作者主题模型不能利用文献的类别标签属性与主题之间的相关性进行主题发现的问题,在对作者主题模型分析的基础上,将科技文献之间固有的类别标签信息引入到作者主题模型中,提出了作者标签主题(LAT)模型。LAT模型通过实现文献的标签信息与主题之间的映射关系,实现文本的多标签判定,提升文档的聚类效果。与传统的潜在狄利克雷分配(LDA)和作者主题(AT)模型的对比实验结果表明,LAT模型能够显著提高模型的泛化能力,提升模型的运行性能。
针对CTCS-4下列车运行的特点,研究了移动闭塞条件下列车追踪运行问题。以多智能体(Multi-Agent)理论为基础,建立了一种移动闭塞条件下的多列车追踪运行多智能体系统(MAS)模型,提出了列车与无线闭塞中心(RBC)之间的MAS交互机制,实现了实时车地通信及多列车追踪运行的安全距离控制。仿真研究了列车追踪运行过程中速度变化关系、不同线路初始化密度对线路交通的影响,得到了相应的定量分析结论。仿真结果表明,该MAS模型能够较好地实现列车控制系统中静态环境与动态环境的复杂系统形式化描述,可以准确地描述CTCS-4列车追踪运行机理,所提方法具有较强的适用性和应用性。
为研究不同客流状况下轨道交通的运行效率和应急方案效率评估,以及突发事件下应急策略的仿真和定量分析,提出了一种城市轨道交通运行仿真平台。该系统从列车运动模型、自动列车控制(ATC)系统结构模型、轨旁设备对象功能模型和移动闭塞系统模型等4个方面对城市轨道交通运行仿真系统进行建模。在此基础上,以VC++作为开发平台,结合计算机网络以及数据库技术,设计并实现了完整的地铁运行仿真平台。在时刻表的驱动下,仿真平台可以实现列车的自动运行。该系统以轨道交通8号线数据进行验证,仿真结果与真实时刻表达一致。
随着我国铁路的迅速发展,对列车运行安全性的要求越来越高。采用Event-B形式化建模方法研究了高速列车安全距离控制形式化验证问题,以Event-B形式化仿真工具Rodin为基础,通过结合多智能体理论,引入感知决策法则,实现了无线闭塞中心(RBC)与列车的车地通信,建立了多列车运行的安全距离控制模型。仿真研究了高速列车最小间隔追踪控制运行,对列车安全距离控车行为进行了形式化建模并进行了POs证明义务验证。仿真结果表明,对于CTCS列车控制系统的复杂逻辑关联行为,采用提出的Event-B和多智能体系统(MAS)结合的形式化验证方法,可进行系统规范的模型验证,对于复杂系统的逻辑验证有较强的实际意义。
针对图像水印的鲁棒性,运用协同序参量理论,提出一种基于协同序参量的定量评价方法。对载体图像完成各类鲁棒性实验,计算比较了各模式的协同序参量初始值,使用序参量演化曲线进行验证,得到相应的鲁棒性定量评价。评价结果与相关系数法一致,但更加方便和实用。