1 |
PAPERNOT N, McDANIEL P, SWAMI A, et al. Crafting adversarial input sequences for recurrent neural networks[C]// Proceedings of the 2016 IEEE Military Communications Conference. Piscataway: IEEE, 2016: 49-54. 10.1109/milcom.2016.7795300
|
2 |
SAMANGOUEI P, KABKAB M, CHELLAPPA R, et al. Defense-GAN: protecting classifiers against adversarial attacks using generative models[EB/OL]. (2018-05-18) [2022-07-13]..
|
3 |
潘文雯,王新宇,宋明黎,等. 对抗样本生成技术综述[J]. 软件学报, 2020, 31(1):67-81.
|
|
PAN W W, WANG X Y, SONG M L, et al. Survey on generating adversarial examples[J]. Journal of Software, 2020, 31(1): 67-81.
|
4 |
王文琦,汪润,王丽娜,等. 面向中文文本倾向性分类的对抗样本生成方法[J]. 软件学报, 2019, 30(8):2415-2427.
|
|
WANG W Q, WANG R, WANG L N, et al. Adversarial examples generation approach for tendency classification on Chinese texts[J]. Journal of Software, 2019, 30(8): 2415-2427.
|
5 |
LI J, JI S, DU T, et al. TextBugger: generating adversarial text against real-world applications[C]// Proceedings of the 26th Annual Network and Distributed System Security Symposium. Reston, VA: Internet Society, 2019: No.23138. 10.14722/ndss.2019.23138
|
6 |
SONG L, YU X, PENG H T, et al. Universal adversarial attacks with natural triggers for text classification[C]// Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. Stroudsburg, PA: ACL, 2021: 3724-3733. 10.18653/v1/2021.naacl-main.291
|
7 |
MAHESHWARY R, MAHESHWARY S, PUDI V. A strong baseline for query efficient attacks in a black box setting[C]// Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing. Stroudsburg, PA: ACL, 2021: 8396-8409. 10.18653/v1/2021.emnlp-main.661
|
8 |
DEVLIN J, CHANG M W, LEE K, et al. BERT: pre-training of deep bidirectional Transformers for language understanding[C]// Proceedings of the2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers). Stroudsburg, PA: ACL, 2019: 4171-4186. 10.18653/v1/n18-2
|
9 |
KULESHOV V, THAKOOR S, LAU T, et al. Adversarial examples for natural language classification problems[EB/OL]. [2022-07-13]..
|
10 |
ALZANTOT M, SHARMA Y, ELGOHARY A, et al. Generating natural language adversarial examples[C]// Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Stroudsburg, PA: ACL, 2018: 2890-2896. 10.18653/v1/d18-1316
|
11 |
REN S, DENG Y, HE K, et al. Generating natural language adversarial examples through probability weighted word saliency[C]// Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Stroudsburg, PA: ACL, 2019: 1085-1097. 10.18653/v1/p19-1103
|
12 |
GARG S, RAMAKRISHNAN G. BAE: BERT-based adversarial examples for text classification[C]// Proceedings of the 2020 Conference on Empirical Methods in Natural. Stroudsburg, PA: ACL, 2020: 6174-6181. 10.18653/v1/2020.emnlp-main.498
|
13 |
仝鑫,王罗娜,王润正,等. 面向中文文本分类的词级对抗样本生成方法[J]. 信息网络安全, 2020, 20(9):12-16. 10.3969/j.issn.1671-1122.2020.09.003
|
|
TONG X, WANG L N, WANG R Z, et al. A generation method of word-level adversarial samples for Chinese text classification[J]. Netinfo Security, 2020, 20(9):12-16. 10.3969/j.issn.1671-1122.2020.09.003
|
14 |
MAHESHWARY R, MAHESHWARY S, PUDI V. Generating natural language attacks in a hard label black box setting[C]// Proceedings of the 35th AAAI Conference on Artificial Intelligence. Palo Alto, CA: AAAI Press, 2021: 13525-13533. 10.1609/aaai.v35i15.17595
|
15 |
LI L, MA R, GUO Q, et al. BERT-ATTACK: adversarial attack against BERT using BERT[C]// Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing. Stroudsburg, PA: ACL, 2020: 6193-6202. 10.18653/v1/2020.emnlp-main.500
|
16 |
MA X, ZHOU C, LI X, et al. FlowSeq: non-autoregressive conditional sequence generation with generative flow[C]// Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing. Stroudsburg, PA: ACL, 2019: 4282-4292. 10.18653/v1/d19-1437
|
17 |
LIU Y, OTT M, GOYAL N, et al. RoBERTa: a robustly optimized BERT pretraining approach[EB/OL]. (2019-07-26) [2022-07-13]..
|
18 |
CER D, YANG Y, KONG S Y, et al. Universal sentence encoder for English[C]// Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing: System Demonstrations. Stroudsburg, PA: ACL, 2018: 169-174. 10.18653/v1/d18-2029
|
19 |
ZHANG X, ZHAO J, LeCUN Y. Character-level convolutional networks for text classification[C]// Proceedings of the 28th International Conference on Neural Information Processing Systems — Volume 1. Cambridge: MIT Press, 2015:649-657.
|
20 |
MAAS A L, DALY R E, PHAM P T, et al. Learning word vectors for sentiment analysis[C]// Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Stroudsburg, PA: ACL, 2011:142-150.
|
21 |
JIN D, JIN Z, ZHOU J T, et al. Is BERT really robust? natural language attack on text classification and entailment[C]// Proceedings of the 34th AAAI Conference on Artificial Intelligence. Palo Alto, CA: AAAI Press, 2020: 8018-8025. 10.1609/aaai.v34i05.6311
|
22 |
YE M, MIAO C, WANG T, et al. TextHoaxer: budgeted hard-label adversarial attacks on text[C]// Proceedings of the 36th AAAI Conference on Artificial Intelligence. Palo Alto, CA: AAAI Press, 2022: 3877-3884. 10.1609/aaai.v36i4.20303
|
23 |
LI D, ZHANG Y, PENG H, et al. Contextualized perturbation for textual adversarial attack[C]// Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. Stroudsburg, PA: ACL, 2020: 5053-5069. 10.18653/v1/2021.naacl-main.400
|