《计算机应用》唯一官方网站 ›› 2024, Vol. 44 ›› Issue (4): 1158-1165.DOI: 10.11772/j.issn.1001-9081.2023050566
所属专题: 网络空间安全
收稿日期:2023-05-09
修回日期:2023-07-28
接受日期:2023-07-31
发布日期:2023-08-03
出版日期:2024-04-10
通讯作者:
陈永乐
作者简介:王昊冉(1998—),男,山西临汾人,硕士研究生,CCF会员,主要研究方向:物联网安全基金资助:
Haoran WANG, Dan YU, Yuli YANG, Yao MA, Yongle CHEN(
)
Received:2023-05-09
Revised:2023-07-28
Accepted:2023-07-31
Online:2023-08-03
Published:2024-04-10
Contact:
Yongle CHEN
About author:WANG Haoran, born in 1998, M. S. candidate. His research interests include IoT security.Supported by:摘要:
针对工业控制系统(ICS)数据匮乏、工控入侵检测系统对未知攻击检测效果差的问题,提出一种基于生成对抗迁移学习网络的工控系统未知攻击入侵检测方法(GATL)。首先,引入因果推理和跨域特征映射关系对数据进行重构,提高数据的可理解性和可靠性;其次,由于源域和目标域数据不平衡,采用基于域混淆的条件生成对抗网络(GAN)增加目标域数据集的规模和多样性;最后,通过域对抗迁移学习融合数据的差异性、共性,提高工控入侵检测模型对目标域未知攻击的检测和泛化能力。实验结果表明,在工控网络标准数据集上,GATL在保持已知攻击高检测率的情况下,对目标域的未知攻击检测的F1-score平均为81.59%,相较于动态对抗适应网络(DAAN)和信息增强的对抗域自适应(IADA)方法分别提升了63.21和64.04个百分点。
中图分类号:
王昊冉, 于丹, 杨玉丽, 马垚, 陈永乐. 面向工控系统未知攻击的域迁移入侵检测方法[J]. 计算机应用, 2024, 44(4): 1158-1165.
Haoran WANG, Dan YU, Yuli YANG, Yao MA, Yongle CHEN. Domain transfer intrusion detection method for unknown attacks on industrial control systems[J]. Journal of Computer Applications, 2024, 44(4): 1158-1165.
| 流量类型 | 描述 |
|---|---|
| Normal | 正常流量 |
| NMRI | 朴素的恶意响应注入攻击 |
| CMRI | 复杂的恶意响应注入攻击 |
| MSCI | 恶意状态指令注入攻击 |
| MPCI | 恶意参数指令注入攻击 |
| MFCI | 恶意函数指令注入攻击 |
| DoS | 拒绝服务攻击 |
| Recon | 侦察攻击 |
表1 攻击类型分类与详细描述
Tab. 1 Attack type classification and detailed description
| 流量类型 | 描述 |
|---|---|
| Normal | 正常流量 |
| NMRI | 朴素的恶意响应注入攻击 |
| CMRI | 复杂的恶意响应注入攻击 |
| MSCI | 恶意状态指令注入攻击 |
| MPCI | 恶意参数指令注入攻击 |
| MFCI | 恶意函数指令注入攻击 |
| DoS | 拒绝服务攻击 |
| Recon | 侦察攻击 |
| 1 | 刘奇旭, 陈艳辉, 尼杰硕, 等. 基于机器学习的工业互联网入侵检测综述[J]. 计算机研究与发展, 2022, 59( 5): 994- 1014. 10.7544/issn1000-1239.20211147 |
| LIU Q X, CHEN Y H, NI J S, et al. Survey on machine learning-based anomaly detection for industrial internet [J]. Journal of Computer Research and Development, 2022, 59( 5): 994- 1014. 10.7544/issn1000-1239.20211147 | |
| 2 | SINIOSOGLOU I, RADOGLOU-GRAMMATIKIS P, EFSTATHOPOULOS G, et al. A unified deep learning anomaly detection and classification approach for smart grid environments[J]. IEEE Transactions on Network and Service Management, 2021, 18( 2): 1137- 1151. 10.1109/tnsm.2021.3078381 |
| 3 | BAJIC B, RIKALOVIC A, SUZIC N, et al. Industry 4.0 implementation challenges and opportunities: a managerial perspective[J]. IEEE Systems Journal, 2021, 15( 1): 546- 559. 10.1109/jsyst.2020.3023041 |
| 4 | BÉCUE A, PRAÇA I, GAMA J. Artificial intelligence, cyber-threats and Industry 4.0: challenges and opportunities[J]. Artificial Intelligence Review, 2021, 54: 3849- 3886. 10.1007/s10462-020-09942-2 |
| 5 | 徐震, 周晓军, 王利明, 等. PLC攻防关键技术研究进展[J]. 信息安全学报, 2019, 4( 3): 48- 69. |
| XU Z, ZHOU X J, WANG L M, et al. Recent advances in PLC attack and protection technology[J]. Journal of Cyber Security, 2019, 4( 3): 48- 69. | |
| 6 | 傅扬. 国内外工业互联网安全态势和风险分析[J]. 信息安全研究, 2019, 5( 8): 728- 733. 10.3969/j.issn.2096-1057.2019.08.014 |
| FU Y. Security situation and threats analysis of industrial internet in China and abroad[J]. Journal of Information Security Research, 2019, 5( 8): 728- 733. 10.3969/j.issn.2096-1057.2019.08.014 | |
| 7 | 房岭峰, 黄丽, 赵琪, 等. 从委内瑞拉大停电看特大型城市电网安全问题[J]. 电力与能源, 2019, 40( 6): 674- 677. |
| FANG L F, HUANG L, ZHAO Q, et al. Discussion on megalopolis power grid safety from the perspective of Venezuelan blackout[J]. Power and Energy, 2019, 40( 6): 674- 677. | |
| 8 | MISHRA P, VARADHARAJAN V, TUPAKULA U, et al. A detailed investigation and analysis of using machine learning techniques for intrusion detection[J]. IEEE Communications Surveys & Tutorials, 2019, 21( 1): 686- 728. 10.1109/comst.2018.2847722 |
| 9 | ALANI M M. Big data in cybersecurity: a survey of applications and future trends[J]. Journal of Reliable Intelligent Environments, 2021, 7: 85- 114. 10.1007/s40860-020-00120-3 |
| 10 | 张子迎, 潘思辰, 王宇华. 基于单类支持向量机的工业控制系统入侵检测[J]. 哈尔滨工程大学学报, 2022, 43( 7): 1043- 1050. 10.11990/jheu.202106073 |
| ZHANG Z Y, PAN S C, WANG Y H. Research on ICS intrusion detection methods based on one class support vector machine [J]. Journal of Harbin Engineering University, 2022, 43( 7): 1043- 1050. 10.11990/jheu.202106073 | |
| 11 | LI Y, LI Y, ZHANG S. Intrusion detection algorithm based on deep learning for industrial control networks[C]// Proceedings of the 2019 2nd International Conference on Robotics, Control and Automation Engineering. New York: ACM, 2019: 40- 44. 10.1145/3372047.3372092 |
| 12 | LIANG W, LI K-C, LONG J, et al. An industrial network intrusion detection algorithm based on multifeature data clustering optimization model[J]. IEEE Transactions on Industrial Informatics, 2020, 16( 3): 2063- 2071. 10.1109/tii.2019.2946791 |
| 13 | 石乐义, 侯会文, 徐兴华, 等. 基于特征选择和时间卷积网络的工业控制系统入侵检测[J]. 工程科学与技术, 2022, 54( 6): 238- 247. |
| SHI L Y, HOU H W, XU X H, et al. Industrial control system intrusion detection based on feature selection and temporal convolutional network [J]. Engineering Science and Technology, 2022, 54( 6): 238- 247. | |
| 14 | GANIN Y, USTINOVA E, AJAKAN H, et al. Domain-adversarial training of neural networks[J]. The Journal of Machine Learning Research, 2016, 17( 1): 2096- 2130. |
| 15 | CAI Z, XIONG Z, XU H, et al. Generative adversarial networks: a survey toward private and secure applications[J]. ACM Computing Surveys, 2021, 54( 6): No. 132. 10.1145/3459992 |
| 16 | SINGLA A, BERTINO E, VERMA D. Preparing network intrusion detection deep learning models with minimal data using adversarial domain adaptation[C]// Proceedings of the 15th ACM Asia Conference on Computer and Communications Security. New York: ACM, 2020: 127- 140. 10.1145/3320269.3384718 |
| 17 | CHEN Y, SU S, YU D, et al. Cross-domain industrial intrusion detection deep model trained with imbalanced data[J]. IEEE Internet of Things Journal, 2022, 10( 1): 584- 596. 10.1109/jiot.2022.3201888 |
| 18 | CHEUNG S, DUTERTRE B, FONG M, et al. Using model-based intrusion detection for SCADA networks[C/OL]// Proceedings of the 2007 SCADA Security Scientific Symposium [2023-05-01]. . |
| 19 | MORRIS T, VAUGHN R, DANDASS Y. A retrofit network intrusion detection system for MODBUS RTU and ASCII industrial control systems[C]// Proceedings of the 2012 45th Hawaii International Conference on System Sciences. Washington, DC: IEEE Computer Society, 2012: 2338- 2345. 10.1109/hicss.2012.78 |
| 20 | DEVAN P, KHARE N. An efficient XGBoost-DNN-based classification model for network intrusion detection system[J]. Neural Computing and Applications, 2020, 32( 16): 12499- 12514. 10.1007/s00521-020-04708-x |
| 21 | SUN P, LIU P, LI Q, et al. DL-IDS: extracting features using CNN-LSTM hybrid network for intrusion detection system[J]. Security and Communication Networks, 2020, 2020: 8890306. 10.1155/2020/8890306 |
| 22 | TIAN Q, HAN D, LI K-C, et al. An intrusion detection approach based on improved deep belief network[J]. Applied Intelligence, 2020, 50: 3162- 3178. 10.1007/s10489-020-01694-4 |
| 23 | ALEM S, ESPES D, NANA L, et al. A novel bi-anomaly-based intrusion detection system approach for industry 4.0[J]. Future Generation Computer Systems, 2023, 145: 267- 283. 10.1016/j.future.2023.03.024 |
| 24 | SIVAMOHAN S, SRIDHAR S S. An optimized model for network intrusion detection systems in industry 4.0 using XAI based Bi-LSTM framework[J]. Neural Computing and Applications, 2023, 35( 15): 11459- 11475. 10.1007/s00521-023-08319-0 |
| 25 | WANG W, WANG C, WANG Z, et al. Abnormal detection technology of industrial control system based on transfer learning[J]. Applied Mathematics and Computation, 2022, 412: 126539. 10.1016/j.amc.2021.126539 |
| 26 | VOWELS M J, CAMGOZ N C, BOWDEN R. D’ya like DAGs? A survey on structure learning and causal discovery[J]. ACM Computing Surveys, 2022, 55( 4): No. 82. 10.1145/3527154 |
| 27 | HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 770- 778. 10.1109/cvpr.2016.90 |
| 28 | MORRIS T, GAO W. Industrial control system traffic data sets for intrusion detection research[C]// Proceedings of the 2014 International Conference on Critical Infrastructure Protection. Berlin: Springer, 2014: 65- 78. 10.1007/978-3-662-45355-1_5 |
| 29 | YU C, WANG J, CHEN Y, et al. Transfer learning with dynamic adversarial adaptation network[C]// Proceedings of the 2019 IEEE International Conference on Data Mining. Piscataway: IEEE, 2019: 778- 786. 10.1109/icdm.2019.00088 |
| [1] | 刘丽, 侯海金, 王安红, 张涛. 基于多尺度注意力的生成式信息隐藏算法[J]. 《计算机应用》唯一官方网站, 2024, 44(7): 2102-2109. |
| [2] | 翟飞宇, 马汉达. 基于DenseNet的经典-量子混合分类模型[J]. 《计算机应用》唯一官方网站, 2024, 44(6): 1905-1910. |
| [3] | 时旺军, 王晶, 宁晓军, 林友芳. 小样本场景下的元迁移学习睡眠分期模型[J]. 《计算机应用》唯一官方网站, 2024, 44(5): 1445-1451. |
| [4] | 李鸿天, 史鑫昊, 潘卫国, 徐成, 徐冰心, 袁家政. 融合多尺度和注意力机制的小样本目标检测[J]. 《计算机应用》唯一官方网站, 2024, 44(5): 1437-1444. |
| [5] | 郑毅, 廖存燚, 张天倩, 王骥, 刘守印. 面向城区的基于图去噪的小区级RSRP估计方法[J]. 《计算机应用》唯一官方网站, 2024, 44(3): 855-862. |
| [6] | 周辉, 陈玉玲, 王学伟, 张洋文, 何建江. 基于生成对抗网络的联邦学习深度影子防御方案[J]. 《计算机应用》唯一官方网站, 2024, 44(1): 223-232. |
| [7] | 刘秋杰, 万源, 吴杰. 深度双模态源域对称迁移学习的跨模态检索[J]. 《计算机应用》唯一官方网站, 2024, 44(1): 24-31. |
| [8] | 陈克正, 郭晓然, 钟勇, 李振平. 基于负训练和迁移学习的关系抽取方法[J]. 《计算机应用》唯一官方网站, 2023, 43(8): 2426-2430. |
| [9] | 金泽熙, 李磊, 刘继. 基于改进领域分离网络的迁移学习模型[J]. 《计算机应用》唯一官方网站, 2023, 43(8): 2382-2389. |
| [10] | 刘安阳, 赵怀慈, 蔡文龙, 许泽超, 解瑞灯. 基于主动判别机制的自适应生成对抗网络图像去模糊算法[J]. 《计算机应用》唯一官方网站, 2023, 43(7): 2288-2294. |
| [11] | 轩勃娜, 李进, 宋亚飞, 马泽煊. 基于改进MobileNetV2的恶意代码分类方法[J]. 《计算机应用》唯一官方网站, 2023, 43(7): 2217-2225. |
| [12] | 陈少权, 蔡剑平, 孙岚. 动态梯度阈值裁剪的差分隐私生成对抗网络算法[J]. 《计算机应用》唯一官方网站, 2023, 43(7): 2065-2072. |
| [13] | 靳鑫, 刘仰川, 朱叶晨, 张子健, 高欣. 基于残差编解码-生成对抗网络的正弦图修复的稀疏角度锥束CT图像重建[J]. 《计算机应用》唯一官方网站, 2023, 43(6): 1950-1957. |
| [14] | 张慧斌, 冯丽萍, 郝耀军, 王一宁. 基于注意力机制和迁移学习的古壁画朝代识别[J]. 《计算机应用》唯一官方网站, 2023, 43(6): 1826-1832. |
| [15] | 郭劲文, 马兴华, 骆功宁, 王玮, 曹阳, 王宽全. 基于Transformer的结构强化IVOCT导丝伪影去除方法[J]. 《计算机应用》唯一官方网站, 2023, 43(5): 1596-1605. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||