Toggle navigation
首页
期刊介绍
期刊简介
历史沿革
收录情况
获奖情况
引用指标
编委会
期刊在线
文章推荐
过刊浏览
专辑专刊
下载排行
阅读排行
投稿指南
组稿方向
投稿须知
论文模板
常见问题
署名变更申请
单位变更申请
版权转让协议
中图分类号
引言书写要求
参考文献著录格式
插图与表格规范
英文摘要书写要求
收费标准
学术诚信
联系我们
编辑部联系方式
位置示意图
期刊订阅办法
广告合作
English
期刊
出版年
关键词
结果中检索
(((韩双全[Author]) AND 1[Journal]) AND year[Order])
AND
OR
NOT
文题
作者
作者单位
关键词
摘要
分类号
DOI
Please wait a minute...
选择:
导出引用
EndNote
Ris
BibTeX
显示/隐藏图片
Select
1.
基于ORB-SLAM2系统的快速误匹配剔除算法与地图构建
席志红, 王洪旭, 韩双全
计算机应用 2020, 40 (
11
): 3289-3294. DOI:
10.11772/j.issn.1001-9081.2020010092
摘要
(
950
)
PDF
(4356KB)(
542
)
可视化
收藏
针对ORB-SLAM2系统中随机抽样一致(RANSAC)算法在误匹配剔除时因其算法本身的随机性而导致效率较低的问题和在ORB-SLAM2系统里未能构建稠密点云地图的问题,采用渐进一致采样(PROSAC)算法来改进ORB-SLAM2系统中的误匹配剔除,并在系统中添加稠密点云地图和八叉树地图构建线程。首先,与RANSAC算法相比,PROSAC算法依据评价函数对特征点进行预排序,并选取评价质量较高的特征点求解单应性矩阵,根据单应性矩阵的解与匹配误差阈值进行误匹配剔除;然后,根据ORB-SLAM2系统进行相机的位姿估计与重定位;最后,根据所选关键帧进行稠密点云地图与八叉树地图的构建。根据TUM数据集上的实验结果,PROSAC算法在进行相同图像的误匹配剔除时所用时间是RANSAC算法的50%左右,并且所提系统的绝对轨迹误差与相对位姿误差与ORB-SLAM2系统基本一致,表现出良好的鲁棒性;另外,与稀疏点云地图相比,提出的新构建地图可以直接用于机器人的导航与路径规划。
参考文献
|
相关文章
|
多维度评价
Select
2.
基于语义分割的室内动态场景同步定位与语义建图
席志红, 韩双全, 王洪旭
计算机应用 2019, 39 (
10
): 2847-2851. DOI:
10.11772/j.issn.1001-9081.2019040711
摘要
(
460
)
PDF
(735KB)(
398
)
可视化
收藏
针对动态物体在室内同步定位与地图构建(SLAM)系统中影响位姿估计的问题,提出一种动态场景下基于语义分割的SLAM系统。在相机捕获图像后,首先用PSPNet(Pyramid Scene Parsing Network)对图像进行语义分割;之后提取图像特征点,剔除分布在动态物体内的特征点,并用静态的特征点进行相机位姿估计;最后完成语义点云图和语义八叉树地图的构建。在公开数据集上的五个动态序列进行多次对比测试的结果表明,相对于使用SegNet网络的SLAM系统,所提系统的绝对轨迹误差的标准偏差有6.9%~89.8%的下降,平移和旋转漂移的标准偏差在高动态场景中的最佳效果也能分别提升73.61%和72.90%。结果表明,改进的系统能够显著减小动态场景下位姿估计的误差,准确地在动态场景中进行相机位姿估计。
参考文献
|
相关文章
|
多维度评价