计算机应用 ›› 2014, Vol. 34 ›› Issue (8): 2429-2433.DOI: 10.11772/j.issn.1001-9081.2014.08.2429

• 行业与领域应用 • 上一篇    下一篇

基于优化相对主元分析的铝电解槽况诊断

黄迪1,李太福2,3,易军2,田应甫4   

  1. 1. 重庆科技学院 安全工程学院,重庆401331
    2. 重庆科技学院 电气与信息工程学院,重庆401331;
    3. 重庆大学 自动化学院,重庆400044
    4. 中国电力投资集团公司 重庆天泰铝业有限公司,重庆401328
  • 收稿日期:2014-02-11 修回日期:2014-03-27 出版日期:2014-08-01 发布日期:2014-08-10
  • 通讯作者: 黄迪
  • 作者简介:黄迪(1989-),男(土家族),湖北利川人,硕士研究生,主要研究方向:复杂系统建模与优化;李太福(1971-),男,四川资阳人,教授,博士,主要研究方向:复杂系统建模与优化、软测量、智能控制;易军(1973-),男,重庆北碚人,副教授,博士,主要研究方向:复杂系统建模与优化;田应甫(1954-),男,四川南充人,高级工程师,主要研究方向:有色金属冶炼。
  • 基金资助:

    国家自然科学基金资助项目;重庆市自然科学基金计划重点项目;重庆市自然科学基金;重庆市教委科学技术研究项目

Diagnosis of aluminum reduction cell status based on optimized relative principal component analysis

HUANG Di1,LI Taifu2,3,YI Jun3,TIAN Yingfu4   

  1. 1. School of Safety Engineering, Chongqing University of Science and Technology, Chongqing 401331, China;
    2. College of Automation, Chongqing University, Chongqing 400044, China;
    3. School of Electrical and Information Engineering, Chongqing University of Science and Technology, Chongqing 401331, China;
    4. Chongqing Tiantai Aluminum Limited Corporation, China Power Investment Corporation, Chongqing 401328, China
  • Received:2014-02-11 Revised:2014-03-27 Online:2014-08-01 Published:2014-08-10
  • Contact: HUANG Di
  • Supported by:

    ;The Key Project of Natural Science Foundation of CQ

摘要:

针对影响铝电解槽状态的参数较多且耦合性强、建立诊断模型的计算量巨大、诊断精度有限等问题,提出一种基于优化相对主元分析(ORPCA)的铝电解槽况诊断方法。利用相对主元分析(RPCA)方法在进行特征选择时的降维优势,提出一种有效的准则以确定主元的相对权重。通过遗传算法(GA)构造误报率适应度函数,考察观测样本在主元空间和残差空间里投影的变化,以获得搜索区域内最优的相对转换矩阵,使Hotelling's T2检验和预测平方差(SPE)检验的误报率降低到最小。对某厂170kA大型预焙槽的样本进行检验,实验结果表明,该方法在置信度为95%和97.5%时,T2检验误报率分别为16.79%和9.77%,SPE检验误报率分别为4.01%和1.75%。与同类算法相比,所提方法不但能准确诊断出铝电解槽中出现的异常状态,而且明显降低T2检验和SPE检验中出现误报的概率。

Abstract:

Concerning the problems that the parameters of the state of the aluminum reduction cells are multivariate and with strong coupling, the calculation of established diagnosis model is large and the precision of diagnosis is limited, this paper proposed Optimized Relative Principal Component Analysis (ORPCA) method to diagnose the status of aluminum reduction cells. An effective principle of determining the relative weight was put forward, which took advantage of Relative Principal Component Analysis (RPCA) in reducing dimensions. In the method, Genetic Algorithm (GA) was used to optimize the fitness function about false alarm rate. The diversification of the sample project in principal component space and residual space was observed to acquire the best relative transforming matrix, so the false alarm rate of Hotelling's T2 test and Squared Prediction Error (SPE) were reduced to the least. By using a group data of 170kA operating aluminum smelter from a factory, the experimental results show that, when the confidence coefficients are 95% and 97.5%, the false alarm rates of T2 test are 16.79% and 9.77% respectively, meanwhile, the false alarm rates of SPE test are 4.01% and 1.75% respectively. Compared with other similar algorithms, the proposed method can test the abnormal condition of aluminum reduction cells and obviously reduce the false alarm rate of Hotelling's T2 test and SPE test.

中图分类号: