[1] 戴巨川, 袁贤松, 刘德顺, 等. 基于SCADA系统的大型直驱式风电机组机舱振动分析[J]. 太阳能学报, 2015, 36(12):2895-2905. (DAI J C, YUAN X S, LIU D S, et al. Vibration analysis of large direct drive wind turbine nacelle based on SCADA system[J]. Acta Energiae Solaris Sinica, 2015, 36(12):2895-2905.) [2] 孙鹏, 李剑, 寇晓适, 等. 采用预测模型与模糊理论的风电机组状态参数异常辨识方法[J]. 电力自动化设备, 2017, 37(8):90-98. (SUN P, LI J, KOU X S, et al. Wind turbine status parameter anomaly detection based on prediction models and fuzzy theory[J]. Electric Power Automation Equipment, 2017, 37(8):90-98.) [3] 尹诗, 余忠源, 孟凯峰, 等. 基于非线性状态估计的风电机组变桨控制系统故障识别[J]. 中国电机工程学报, 201434(增刊1):160-165. (YIN S, YU Z Y, MENG K F, et al. Fault identification of pitch control system of wind turbine based on nonlinear state estimation[J]. Proceedings of the CSEE, 2014, 34(S1):160-165.) [4] BANGALORE P, PATRIKSSON M. Analysis of SCADA data for early fault detection, with application to the maintenance management of wind turbines[J]. Renewable Energy, 2018, 115:521-532. [5] de la HERMOSA G-C R R. Wind farm monitoring using Mahalanobis distance and fuzzy clustering[J]. Renewable Energy, 2018, 123:526-540. [6] 刘帅, 刘长良, 甄成刚, 等. 基于群体多维相似性的风机齿轮箱预警策略[J]. 仪器仪表学报, 2018, 39(1):180-189. (LIU S, LIU C L, ZHEN C G, et al. Fault warning strategy of wind turbines gearbox based on group multi-dimensional similarity[J]. Chinese Journal of Scientific Instrument, 2018, 39(1):180-189.) [7] HERP J, RAMEZANI M H, BACH-ANDERSEN M, et al. Bayesian state prediction of wind turbine bearing failure[J]. Renewable Energy, 2018, 116:164-172. [8] WANG Y, MA X, QIAN P. Wind turbine fault detection and identification through PCA-based optimal variable selection[J]. IEEE Transactions on Sustainable Energy, 2018, 9(4):1627-1635. [9] ITAKURA F. Minimum prediction residual principle applied to speech recognition[J]. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1975, 23(1):67-72. [10] 解本铭, 韩明明, 张攀, 等. 飞机牵引车语音识别的动态时间规整优化算法[J]. 计算机应用, 2018, 38(6):1771-1776, 1789. (XIE B M, HAN M M, ZHANG P, et al. Optimization algorithm of dynamic time warping for speech recognition of aircraft towing vehicle[J]. Journal of Computer Applications, 2018, 38(6):1771-1776, 1789.) [11] TORRA V, NARUKAWA Y. On hesitant fuzzy sets and decision[C]//Proceedings of the 2009 IEEE International Conference on Fuzzy Systems. Piscataway, NJ:IEEE, 2009:1378-1382. [12] XU Z, XIA M. Distance and similarity measures for hesitant fuzzy sets[J]. Information Sciences, 2011, 181(11):2128-2138. [13] GOU X, XU Z, LIAO H. Hesitant fuzzy linguistic entropy and cross-entropy measures and alternative queuing method for multiple criteria decision making[J]. Information Sciences, 2017, 388/389:225-246. [14] ATASHPAZ-GARGARI E, LUCAS C. Imperialist competitive algorithm:an algorithm for optimization inspired by imperialistic competition[C]//CEC 2007:Proceedings of the 2007 IEEE Congress on Evolutionary computation. Piscataway, NJ:IEEE, 2007:4661-4667. [15] 吕聪, 魏康林. 柔性车间调度问题的协作混合帝国算法[J]. 计算机应用, 2018, 38(7):1882-1887. (LYU C, WEI K L. Cooperative hybrid imperialist competitive algorithm for flexible job-shop scheduling problem[J]. Journal of Computer Applications, 2018, 38(7):1882-1887.) [16] 杨小东, 康雁, 柳青, 等. 求解作业车间调度问题的混合帝国主义竞争算法[J]. 计算机应用, 2017, 37(2):517-522, 552. (YANG X D, KANG Y, LIU Q, et al. Hybrid imperialist competitive algorithm for solving job-shop scheduling problem[J]. Journal of Computer Applications, 2017, 37(2):517-522, 552.) [17] 刘帅, 刘长良. 基于帝国竞争算法的主汽温控制系统参数优化研究[J]. 系统仿真学报, 2017, 29(2):368-373. (LIU S, LIU C L. Cascade PID parameter optimization of main steam temperature control system based on imperialist competitive algorithm[J]. Journal of System Simulation, 2017, 29(2):368-373.) [18] LIU S, LIU C. Scale-varying dynamic time warping based on hesitant fuzzy sets for multivariate time series classification[J]. Measurement, 2018, 130:290-297. |