[1] GOVINDARAJAN M, CHANDRASEKARAN R M. Intrusion detection using neural based hybrid classification methods [J]. Computer Networks,2011,55(8):1662-1671. [2] WANG H, CHEN H, LIU S. Intrusion detection system based on improved naive Bayesian algorithm [J]. Computer Science, 2014, 41(4):111-115,119. (王辉,陈泓予,刘淑芬. 基于改进朴素贝叶斯算法的入侵检测系统[J].计算机科学,2014, 41(4): 111-115, 119.) [3] TAN A, CHEN H, WU B. Network intrusion intelligent detection algorithm based on AdaBoost [J].Computer Science, 2014, 41(2): 197-200. (谭爱平,陈浩,吴伯桥. 基于SVM的网络入侵检测集成学习算法[J].计算机科学,2014,41(2):197-200.) [4] LIU Y,TIAN D,YU X, et al. Large-scale network intrusion detection algorithm based on distributed learning [J]. Journal of Software,2008,19(4):993-1003. (刘衍珩,田大新,余雪岗,等.基于分布式学习的大规模网络入侵检测算法[J]. 软件学报,2008,19(4):993-1003.) [5] YASAMI Y, KHORSANDI S, MOZAFFARI S P, et al. An unsupervised network anomaly detection approach by k-Means clustering & ID3 algorithms [C]// ISCC 2008: Proceedings of the 2008 IEEE Symposium on Computers and Communications. Piscataway: IEEE, 2008: 398-403. [6] DARTIQUE C, JANG H I, ZENG W. A new data-mining based approach for network intrusion detection [C]// CNSR '09: Proceedings of the Seventh Annual Communication Networks and Services Research Conference. Piscataway: IEEE, 2009: 372-377. [7] [CM(27]LEE W, STOLFO S J, MOK K W. A data mining framework for building intrusion detection models [C]// Proceedings of the 1999 IEEE Symposium on Security and Privacy. Washington, DC: IEEE Computer Society, 1999: 120-132. [8] [JP2]ESTAN C, SAVAGE S, VARGHESE G. Automatically inferring patterns of resource consumption in network traffic [C]// SIGCOMM '03: Proceedings of the 2003 Conference on Applications, Technologies, Architectures, and Protocols for Computer Communications. New York: ACM, 2003: 137-148. [9] YU Y, GUO S, HUANG H. Anomaly intrusion detection based on data stream [J]. Computer Science, 2007, 34(5): 66-71,114. (俞研,郭山清,黄皓.基于数据流的异常入侵检测[J].计算机科学,2007,34(5):66-71,114.) [10] WEI X, HUANG H, TIAN S. An online adaptive network anomaly detection system model and algorithm [J]. Journal of Computer Research and Development, 2010, 47(3): 485-492. (魏小涛,黄厚宽,田盛丰.在线自适应网络异常检测系统模型与算法[J].计算机研究与发展,2010,47(3):485-492.) [11] HUANG Z. Extensions to the k-Means algorithm for clustering large data sets with categorical values [J]. Data Mining and Knowledge Discovery, 1998, 2(3): 283-304. [12] COVER T, THOMAS J. Elements of information theory [M]. 2nd ed. Hoboken: John Wiley & Sons, 2006: 13-30. [13] CHEN K, LIU L. "Best K": critical clustering structures in categorical datasets [J]. Knowledge and Information Systems, 2009, 20 (1): 1-33. [14] FRANK A, ASUNCION A. UCI. Machine Learning Repository [DB/OL]. [2014-08-19]. http://archive.ics.uci.edu/ml. |