1 |
YANG Y, WANG H. Multi-view clustering: a survey [J]. Big Data Mining and Analytics, 2018, 1(2): 83-107.
|
2 |
乔宇鑫, 葛洪伟, 宋鹏. 全局与局部结构学习的多视图子空间聚类算法[J]. 计算机科学与探索, 2023, 17(9): 2107-2117.
|
|
QIAO Y X, GE H W, SONG P. Global and local structure learning for multi-view subspace clustering [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(9): 2107-2117.
|
3 |
NIE F, LI J, LI X. Self-weighted multiview clustering with multiple graphs[C]// Proceedings of the 26th International Joint Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2017: 2564-2570.
|
4 |
YU S, TRANCHEVENT L, LIU X, et al. Optimized data fusion for kernel k-means clustering[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34(5): 1031-1039.
|
5 |
ZHANG C, LIU Y, FU H. AE2-Nets: autoencoder in autoencoder networks[C]// Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019: 2572-2580.
|
6 |
LIN Y, GOU Y, LIU Z, et al. COMPLETER: incomplete multi-view clustering via contrastive prediction[C]// Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2021: 11169-11178.
|
7 |
KE G, HONG Z, ZENG Z, et al. CONAN: contrastive fusion networks for multi-view clustering[C]// Proceedings of the 2021 IEEE International Conference on Big Data. Piscataway: IEEE, 2021: 653-660.
|
8 |
FAN S, WANG X, SHI C, et al. One2Multi graph autoencoder for multi-view graph clustering[C]// Proceedings of the Web Conference 2020. New York: ACM, 2020: 3070-3076.
|
9 |
WANG Y, CHANG D, FU Z, et al. Consistent multiple graph embedding for multi-view clustering[J]. IEEE Transactions on Multimedia, 2023, 25: 1008-1018.
|
10 |
杜国王, 周丽华, 王丽珍, 等. 基于两级权重的多视角聚类[J]. 计算机研究与发展, 2022, 59(4): 907-921.
|
|
DU G W, ZHOU L H, WANG L Z, et al. Multi-view clustering based on two-level weights [J]. Journal of Computer Research and Development, 2022, 59(4): 907-921.
|
11 |
谢胜利, 陈泓达, 高军礼, 等. 基于分布对齐变分自编码器的深度多视图聚类[J]. 计算机学报, 2023, 46(5): 945-959.
|
|
XIE S L, CHEN H D, GAO J L, et al. Deep multi-view clustering based on distribution aligned variational autoencoder [J]. Chinese Journal of Computers, 2023, 46(5): 945-959.
|
12 |
ABAVISANI M, PATEL V M. Deep multimodal subspace clustering networks[J]. IEEE Journal of Selected Topics in Signal Processing, 2018, 12(6): 1601-1614.
|
13 |
LI Z, WANG Q, TAO Z, et al. Deep adversarial multi-view clustering network[C]// Proceedings of the 28th International Joint Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2019: 2952-2958.
|
14 |
XU J, REN Y, LI G, et al. Deep embedded multi-view clustering with collaborative training[J]. Information Sciences, 2021, 573: 279-290.
|
15 |
LIU L, KANG Z, RUAN J, et al. Multilayer graph contrastive clustering network[J]. Information Sciences, 2022, 613: 256-267.
|
16 |
KULATILLEKE G K, PORTMANN M, CHANDRA S S. SCGC: self-supervised contrastive graph clustering [EB/OL]. (2022-04-27)[2023-10-01]. .
|
17 |
VELIČKOVIĆ P, FEDUS W, HAMILTON W L, et al. Deep graph Infomax [EB/OL]. (2018-12-21)[2023-10-01]. .
|
18 |
XU D, CHENG W, LUO D, et al. InfoGCL: information-aware graph contrastive learning[C]// Proceedings of the 35th International Conference on Neural Information Processing Systems. [S.l.]: Neural Information Processing Systems Foundation, 2021: 30414-30425.
|
19 |
JING B, PARK C, TONG H. HDMI: high-order deep multiplex Infomax[C]// Proceedings of the Web Conference 2021. New York: ACM, 2021: 2414-2424.
|
20 |
ZHU Y, XU Y, YU F, et al. Deep graph contrastive representation learning [EB/OL]. (2020-07-13)[2023-10-01]. .
|
21 |
XU J, TANG H, REN Y, et al. Multi-level feature learning for contrastive multi-view clustering[C]// Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2022: 16030-16039.
|
22 |
PAN E, KANG Z. Multi-view contrastive graph clustering[C]//Proceedings of the 35th International Conference on Neural Information Processing Systems. New York: ACM, 2024: 2148-2159.
|
23 |
XIE J, GIRSHICK R, FARHADI A. Unsupervised deep embedding for clustering analysis[C]// Proceedings of the 33rd International Conference on Machine Learning. New York: JMLR.org, 2016: 478-487.
|
24 |
TU W, ZHOU S, LIU X, et al. Deep fusion clustering network[C]// Proceedings of the 35th AAAI Conference on Artificial Intelligence. Menlo Park: AAAI Press, 2021: 9978-9987.
|
25 |
ZHANG C, HU Q, FU H, et al. Latent multi-view subspace clustering[C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 4333-4341.
|
26 |
MI Y, DAI J, REN Z, et al. One-stage multi-view clustering with hierarchical attributes extraction[J]. Cognitive Computation, 2023, 15: 552-564.
|
27 |
XU J, REN Y, TANG H, et al. Self-supervised discriminative feature learning for deep multi-view clustering[J]. IEEE Transactions on Knowledge and Data Engineering, 2023, 35(7): 7470-7482.
|
28 |
LI R, ZHANG C, FU H, et al. Reciprocal multi-layer subspace learning for multi-view clustering[C]// Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019: 8171-8179.
|
29 |
WANG H, YANG Y, LIU B. GMC: graph-based multi-view clustering[J]. IEEE Transactions on Knowledge and Data Engineering, 2019, 32(6): 1116-1129.
|
30 |
TROSTEN D J, LØKSE S, JENSSEN R, et al. Reconsidering representation alignment for multi-view clustering[C]// Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2021: 1255-1265.
|
31 |
LIN Z, KANG Z, ZHANG L, et al. Multi-view attributed graph clustering[J]. IEEE Transactions on Knowledge and Data Engineering, 2023, 35(2): 1872-1880.
|
32 |
VAN DER MAATEN L, HINTON G. Visualizing data using t-SNE[J]. Journal of Machine Learning Research, 2008, 9: 2579-2605.
|