[1] UEDA N, SAITO K. Parametric mixture models for multi-labeled text [C]// Advances in Neural Information Processing Systems 15. Cambridge: MIT Press, 2003: 721-728. [2] KAZAWA H, IZUMITANI T, TAIRA H, et al. Maximal margin labeling for multi-topic text categorization [C]// Advances in Neural information Processing Systems 17. Cambridge: MIT Press, 2005: 649-656. [3] SCHAPIRE R.R, SINGER Y. Boostexter: a boosting-based system for text categorization [J]. Machine Learning, 2000, 39(2/3): 135-168. [4] ZHANG M, ZHOU Z. Multi-label neural networks with applications to functional genomics and text categorization [J]. IEEE Transactions on Knowledge and Data Engineering, 2006, 18(10): 1338-1351. [5] BOUTELL M R, LUO J, SHEN X, et al. Learning multi-label scene classification [J]. Pattern Recognition, 2004, 37(9): 1757-1771. [6] KANG F, JIN R, SUKTHANKAR R. Correlated label propagation with application to multi-label learning [C]// Proceeding of the 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2006: 1719-1726. [7] QI G, HUA X, RUI Y, et al. Correlative multi-label video annotation [C]// Proceedings of the 15th ACM International Conference on Multimedia. New York: ACM, 2007: 17-26. [8] ELISSEEFF A, WESTON J. A kernel method for multi-labelled classification [C]// Advances in Neural Information Processing Systems 14. Cambridge: MIT Press, 2002: 681-687. [9] BARUTCUOGLU Z, SCHAPIRE R E, TROYANSKAYA O G. Hierarchical multi-label prediction of gene function [J]. Bioinformatics, 2006, 22(7): 830-836. [10] ZHANG Y, ZHOU Z. Multi-label dimensionality reduction via dependence maximization [J]. ACM Transactions on Knowledge Discovery from Data, 2010, 4(3):14. [11] GRETTON A, BOUSQUET O, SMOLA A J, et al. Measuring statistical dependence with Hibert-Schmidt norms [C]// Proceedings of the 16th International Conference on Algorithmic Learning Theory. Berlin: Springer, 2005: 63-77. [12] SONG L, SMOLA A, GRETTON A, et al. Supervised feature selection via dependence estimation [C]// Proceeding of the 24th International Conference on Machine Learning. New York: ACM, 2007: 823-830. [13] CHEN J, JI S, CERAN B, et al. Learning subspace kernels for classification [C]// Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2008: 106-114. [14] TSOUMAKAS G, KATAKIS I. Multi-label classification: an overview [J]. International Journal of Data Warehousing and Mining, 2007, 3(3): 1-13. [15] WESTON J, CHAPELLE O, ELISSEEFF A, et al. Kernel de-pendency estimation [C]// Advances in Neural Information Processing Systems 15. Cambridge: MIT Press, 2003: 873-880. [16] COVER T M, THOMAS J A. Elements of information theory [M]. Hoboken: Wiley-Blackwell, 1991: 13-19. [17] ZHANG M, ZHOU Z. ML-kNN: a lazy learning approach to multi-label learning [J]. Pattern Recognition, 2007, 40(7): 2038-2048. [18] TROHIDIS K, TSOUMAKAS G, KALLIRIS G, et al. Multi-label classification of music into emotions [C]// Proceedings of the 9th International Conference on Music Information Retrieval. Philadelphia: Drexel University, 2008: 325-330. |