[1] 辛菁,苟蛟龙,马晓敏,等.基于Kinect的移动机器人大视角3维V-SLAM[J].机器人,2014,36(5):560-568. (XIN Q, GOU J L, MA X M, et al. A large viewing angle 3-dimensional V-SLAM algorithm with a Kinect-based mobile robot system[J]. Robot, 2014, 36(5): 560-568.) [2] ZHAO Z S, FENG X, TENG S H, et al. Multiscale point correspondence using feature distribution and frequency domain alignment[J]. Mathematical Problems in Engineering, 2012, 2012(3): 295-308. [3] 朱笑笑,曹其新,杨扬,等. 一种改进的Kinect Fusion三维重构算法[J].机器人,2014,36(2):129-136. (ZHU X X, CHAO Q X, YANG Y, et al. An improved Kinect fusion 3D reconstruction algorithm[J]. Robot, 2014, 36(2): 129-136.) [4] ZHAO Z-S, FENG X, WEI F, et.al. Learning representative features for robot topological localization[J]. International Journal of Advanced Robotic Systems, 2013, 10: 215. [5] YANG Q-Q, WANG L-H, LI D-X, et.al. Hierarchical joint bilateral filtering for depth post-processing[C]//ICIG2011: Proceedings of the Sixth International Conference on Image and Graphics. Washington, DC: IEEE Computer Society, 2011: 129-134. [6] CHEN L, LIN H, LI S. Depth image enhancement for Kinect using region growing and bilateral filter[C]//ICPR 2012: Proceedings of the 2012 International Conference on Pattern Recognition. Piscataway: IEEE, 2012: 3070-3073. [7] QIAO T-Z, DAI S-L. Depth data filtering for real-time head pose estimation with Kinect[C]//CISP 2013: Proceedings of the Sixth Congress on Image and Signal Processing. Piscataway: IEEE, 2013: 953-958. [8] SHEN Y, LI J, LU C. Depth map enhancement method based on joint bilateral filter[C]//CISP 2014: Proceedings of the 7th Congress on Image and Signal Processing. Piscataway: IEEE, 2014: 153-158. [9] FENG C. DAI S L. Adaptive depth map enhancement based on joint bilateral filter[C]//CGNCC 2014: Proceedings of the 2014 Conference on Guidance Navigation and Control. Piscataway: IEEE, 2014: 2568-2571. [10] 赵玉华,袁峰,丁振良,等.基于合作目标的姿态测量系统建模及精度的蒙特卡罗估计[J].仪器仪表学报,2010,31(8):1873-1877. (ZHAO Y H, YUAN F, DING Z L, et al. Modeling of the attitude measurement system based on cooperation target and its accuracy estimation with Monte-Carlo simulation[J]. Chinese Journal of Scientific Instrument, 2010, 31(8): 1873-1877.) [11] 陈杰春,张恒,赵丽萍.基于蒙特卡罗方法的边界检测不确定度估计[J].东北电力大学学报,2012,32(3):75-78. (CHENG J C, ZHANG H, ZHAO L P. Boundary detection uncertainty estimation based on the Monte Carlo method[J]. Journal of Northeast Dianli University, 2012, 32(3): 75-78) [12] BATTISTA L, SCHENA E, SCHIAVONE G, et al. Calibration and uncertainty evaluation using Monte Carlo method of a simple 2D sound localization system[J]. Sensors Journal, 2013, 13(9): 3312-3318. [13] 韩连福,付长凤,王军,等.基于QMC的齿轮测量中心测量不确定度评定方法[J].光学仪器,2015,37(2):111-115. (HAN L F, FU C F, WANG J, et al. Evaluation on uncertainty of gear center measurement based on quasi Monte-Carlo method[J]. Optical Instruments, 2015, 37(2): 111-115.) [14] Prime Sense Ltd, GARCIA J, ZALEVSKY Z. Range mapping using speckle decorrelation: U.S. 7433024B2 [P]. 2008-10-07. [15] 国家质量技术监督局计量司.测量不确定度评定与表示指南[M].北京:中国计量出版社,2005:22-28. (The State Bureau of Quality and Technical Supervision Measurement Department. Evaluation and expression of uncertainty measurement in guide[M]. Beijing: Chinese Metrology Press, 2005:22-28.) [16] 陈怀艳,曹芸,韩洁.基于蒙特卡罗法的测量不确定度评定[J].电子测量与仪器学报,2011,25(4):301-307. (CHENG H Y, CHAO Y, HAN J. Evaluation of uncertainty in measurement based on a Monte Carlo method[J]. Journal of Electronic Measurement and Instrument, 2011, 25(4): 301-307.) [17] YANG J Y, YE X C, LI K, et al. Color-guided depth recovery from RGB-D data using an adaptive autoregressive model[J]. IEEE Transactions on Image Processing, 2014, 23(8): 3443-3458. [18] Middlebury datasets [DS/OL]. [2015-01-12]. http://vision.middlebury.edu/stereo/data/. |