《计算机应用》唯一官方网站 ›› 2023, Vol. 43 ›› Issue (2): 545-551.DOI: 10.11772/j.issn.1001-9081.2021122107
• 前沿与综合应用 • 上一篇
收稿日期:
2021-12-13
修回日期:
2022-03-08
接受日期:
2022-03-15
发布日期:
2023-02-08
出版日期:
2023-02-10
通讯作者:
张玉金
作者简介:
沈万里(1997—),男,上海人,硕士研究生,CCF会员,主要研究方向:图像处理、深度学习、图像修复取证基金资助:
Wanli SHEN, Yujin ZHANG(), Wan HU
Received:
2021-12-13
Revised:
2022-03-08
Accepted:
2022-03-15
Online:
2023-02-08
Published:
2023-02-10
Contact:
Yujin ZHANG
About author:
SHEN Wanli, born in 1997, M. S. candidate. His research interests include image processing, deep learning, image inpainting forensics.Supported by:
摘要:
图像修复是一种常见的图像篡改手段,而基于深度学习的图像修复方法能生成更复杂的结构乃至新的对象,使得图像修复取证工作更具有挑战性。因此,提出一种端到端的面向图像修复取证的U型特征金字塔网络(FPN)。首先,通过自上而下的VGG16模块进行多尺度特征提取,并利用自下而上的特征金字塔架构对融合后的特征图进行上采样,整体流程形成U型结构;然后,结合全局和局部注意力机制凸显修复痕迹;最后,使用融合损失函数以提高修复区域的预测率。实验结果表明,所提方法在多种深度修复数据集上的平均F1分数和IoU值分别为0.791 9和0.747 2,与现有的基于扩散的数字图像修复定位(LDI)、基于图像块的深度修复取证方法(Patch-CNN)和基于高通全卷积神经网络(HP-FCN)方法相比,所提方法具有更好的泛化能力,且对JPEG压缩也具有较强的鲁棒性。
中图分类号:
沈万里, 张玉金, 胡万. 面向图像修复取证的U型特征金字塔网络[J]. 计算机应用, 2023, 43(2): 545-551.
Wanli SHEN, Yujin ZHANG, Wan HU. U-shaped feature pyramid network for image inpainting forensics[J]. Journal of Computer Applications, 2023, 43(2): 545-551.
Input | Operator | Filter | Channel |
---|---|---|---|
M×N×3 | Conv1-1 | 3×3 | 64 |
M×N×64 | Conv1-2 | 3×3 | 64 |
M×N×64 | Max-pooling | 2×2 | 128 |
M×N×128 | Conv2-1 | 3×3 | 128 |
M×N×128 | Conv2-2 | 3×3 | 128 |
M×N×128 | Max-pooling | 2×2 | 256 |
M×N×256 | Conv3-1 | 3×3 | 256 |
M×N×256 | Conv3-2 | 3×3 | 256 |
M×N×256 | Conv3-3 | 3×3 | 256 |
M×N×256 | Max-pooling | 2×2 | 512 |
M×N×512 | Conv4-1 | 3×3 | 512 |
M×N×512 | Conv4-2 | 3×3 | 512 |
M×N×512 | Conv4-3 | 3×3 | 512 |
M×N×512 | Max-pooling | 2×2 | 512 |
M×N×512 | Conv5-1 | 3×3 | 512 |
M×N×512 | Conv5-2 | 3×3 | 512 |
M×N×512 | Conv5-3 | 3×3 | 512 |
表1 VGG16特征提取模块的结构
Tab. 1 Structure of VGG16 feature extraction module
Input | Operator | Filter | Channel |
---|---|---|---|
M×N×3 | Conv1-1 | 3×3 | 64 |
M×N×64 | Conv1-2 | 3×3 | 64 |
M×N×64 | Max-pooling | 2×2 | 128 |
M×N×128 | Conv2-1 | 3×3 | 128 |
M×N×128 | Conv2-2 | 3×3 | 128 |
M×N×128 | Max-pooling | 2×2 | 256 |
M×N×256 | Conv3-1 | 3×3 | 256 |
M×N×256 | Conv3-2 | 3×3 | 256 |
M×N×256 | Conv3-3 | 3×3 | 256 |
M×N×256 | Max-pooling | 2×2 | 512 |
M×N×512 | Conv4-1 | 3×3 | 512 |
M×N×512 | Conv4-2 | 3×3 | 512 |
M×N×512 | Conv4-3 | 3×3 | 512 |
M×N×512 | Max-pooling | 2×2 | 512 |
M×N×512 | Conv5-1 | 3×3 | 512 |
M×N×512 | Conv5-2 | 3×3 | 512 |
M×N×512 | Conv5-3 | 3×3 | 512 |
实验 | Recall | Precision | IoU | F1 |
---|---|---|---|---|
场景1 | 82.22 | 92.16 | 76.63 | 84.54 |
场景2 | 82.71 | 95.17 | 79.42 | 86.60 |
场景3 | 96.18 | 87.88 | 84.92 | 91.84 |
场景4 | 99.17 | 94.78 | 94.03 | 96.92 |
表2 所提方法不同变体的定位结果 ( %)
Tab. 2 Localization results obtained by different variants of the proposed method
实验 | Recall | Precision | IoU | F1 |
---|---|---|---|---|
场景1 | 82.22 | 92.16 | 76.63 | 84.54 |
场景2 | 82.71 | 95.17 | 79.42 | 86.60 |
场景3 | 96.18 | 87.88 | 84.92 | 91.84 |
场景4 | 99.17 | 94.78 | 94.03 | 96.92 |
数据集 | LDI | Patch-CNN | HP-FCN | 本文方法 | ||||
---|---|---|---|---|---|---|---|---|
F1 | IoU | F1 | IoU | F1 | IoU | F1 | IoU | |
平均 | 41.65 | 33.60 | 57.17 | 41.95 | 66.94 | 59.22 | 79.19 | 74.72 |
GC | 58.56 | 46.35 | 56.08 | 49.48 | 76.93 | 72.15 | 80.69 | 78.15 |
CA | 39.43 | 23.12 | 58.37 | 41.22 | 52.38 | 44.58 | 80.05 | 78.29 |
SH | 39.24 | 26.13 | 65.86 | 49.10 | 71.43 | 62.85 | 78.94 | 76.01 |
LB | 48.46 | 37.27 | 49.56 | 32.94 | 68.57 | 60.10 | 78.17 | 70.95 |
RN | 51.14 | 39.33 | 54.40 | 37.36 | 65.78 | 57.12 | 79.15 | 74.09 |
EC | 43.91 | 29.42 | 58.76 | 41.61 | 66.58 | 58.48 | 77.67 | 70.83 |
表3 品质因子为96时,在六个数据集上F1分数和IoU值的比较 ( %)
Tab.3 Comparison of F1-score and IoU values on six datasets when quality factor is 96
数据集 | LDI | Patch-CNN | HP-FCN | 本文方法 | ||||
---|---|---|---|---|---|---|---|---|
F1 | IoU | F1 | IoU | F1 | IoU | F1 | IoU | |
平均 | 41.65 | 33.60 | 57.17 | 41.95 | 66.94 | 59.22 | 79.19 | 74.72 |
GC | 58.56 | 46.35 | 56.08 | 49.48 | 76.93 | 72.15 | 80.69 | 78.15 |
CA | 39.43 | 23.12 | 58.37 | 41.22 | 52.38 | 44.58 | 80.05 | 78.29 |
SH | 39.24 | 26.13 | 65.86 | 49.10 | 71.43 | 62.85 | 78.94 | 76.01 |
LB | 48.46 | 37.27 | 49.56 | 32.94 | 68.57 | 60.10 | 78.17 | 70.95 |
RN | 51.14 | 39.33 | 54.40 | 37.36 | 65.78 | 57.12 | 79.15 | 74.09 |
EC | 43.91 | 29.42 | 58.76 | 41.61 | 66.58 | 58.48 | 77.67 | 70.83 |
方法 | LDI | Patch-CNN | HP-FCN | 本文方法 |
---|---|---|---|---|
平均 | 8.67 | 13.51 | 28.53 | 77.34 |
GC | 15.29 | 19.02 | 30.66 | 78.29 |
CA | 2.30 | 14.17 | 26.81 | 79.13 |
SH | 6.26 | 5.01 | 34.17 | 75.74 |
LB | 10.39 | 6.35 | 29.39 | 77.01 |
RN | 14.17 | 15.09 | 25.16 | 76.90 |
EC | 3.62 | 21.44 | 25.00 | 76.98 |
表4 品质因子为85时,在六个数据集上F1分数的比较 ( %)
Tab. 4 Comparison of F1-score on six datasets when quality factor is 85
方法 | LDI | Patch-CNN | HP-FCN | 本文方法 |
---|---|---|---|---|
平均 | 8.67 | 13.51 | 28.53 | 77.34 |
GC | 15.29 | 19.02 | 30.66 | 78.29 |
CA | 2.30 | 14.17 | 26.81 | 79.13 |
SH | 6.26 | 5.01 | 34.17 | 75.74 |
LB | 10.39 | 6.35 | 29.39 | 77.01 |
RN | 14.17 | 15.09 | 25.16 | 76.90 |
EC | 3.62 | 21.44 | 25.00 | 76.98 |
方法 | LDI | Patch-CNN | HP-FCN | 本文方法 |
---|---|---|---|---|
平均 | 0.51 | 8.88 | 24.62 | 72.72 |
GC | 0.04 | 10.23 | 27.10 | 76.54 |
CA | 0.22 | 3.87 | 22.08 | 74.65 |
SH | 0.38 | 6.20 | 30.43 | 69.73 |
LB | 0.05 | 6.89 | 28.57 | 70.58 |
RN | 1.98 | 9.42 | 18.52 | 68.13 |
EC | 0.42 | 16.69 | 21.06 | 76.68 |
表5 品质因子为75时,在六个数据集上F1分数的比较 ( %)
Tab.5 Comparison of F1-score on six datasets when quality factor is 75
方法 | LDI | Patch-CNN | HP-FCN | 本文方法 |
---|---|---|---|---|
平均 | 0.51 | 8.88 | 24.62 | 72.72 |
GC | 0.04 | 10.23 | 27.10 | 76.54 |
CA | 0.22 | 3.87 | 22.08 | 74.65 |
SH | 0.38 | 6.20 | 30.43 | 69.73 |
LB | 0.05 | 6.89 | 28.57 | 70.58 |
RN | 1.98 | 9.42 | 18.52 | 68.13 |
EC | 0.42 | 16.69 | 21.06 | 76.68 |
方法 | 平均运行时间 | 方法 | 平均运行时间 |
---|---|---|---|
LDI | 30.7 | HP-FCN | 0.049 |
Patch-CNN | 1.9 | 本文方法 | 0.032 |
表6 不同方法的平均运行时间 ( s)
Tab. 6 Average running times of different methods
方法 | 平均运行时间 | 方法 | 平均运行时间 |
---|---|---|---|
LDI | 30.7 | HP-FCN | 0.049 |
Patch-CNN | 1.9 | 本文方法 | 0.032 |
1 | ZHANG Y L, DING F, KWONG S, et al. Feature pyramid network for diffusion-based image inpainting detection[J]. Information Sciences, 2021, 572: 29-42. 10.1016/j.ins.2021.04.042 |
2 | 冯浪,张玲,张晓龙. 基于扩张卷积的图像修复[J]. 计算机应用, 2020, 40(3):825-831. 10.11772/j.issn.1001-9081.2019081471 |
FENG L, ZHANG L, ZHANG X L. Image inpainting based on dilated convolution[J]. Journal of Computer Applications, 2020, 40(3):825-831. 10.11772/j.issn.1001-9081.2019081471 | |
3 | ELHARROUSS O, ALMAADEED N, AL-MAADEED S, et al. Image inpainting: a review[J]. Neural Processing Letters, 2020, 51(2): 2007-2028. 10.1007/s11063-019-10163-0 |
4 | 刘婷婷,张玉金,吴飞,等. 基于梯度域导向滤波增强的图像扩散修复取证[J]. 激光与光电子学进展, 2020, 57(8):43-50. 10.3788/lop57.081003 |
LIU T T, ZHANG Y J, WU F, et al. Diffusion-based image inpainting forensics via gradient domain guided filtering enhancement[J]. Laser and Optoelectronics Progress, 2020, 57(8):43-50. 10.3788/lop57.081003 | |
5 | LI H D, LUO W Q, HUANG J W. Localization of diffusion-based inpainting in digital images[J]. IEEE Transactions on Information Forensics and Security, 2017, 12(12): 3050-3064. 10.1109/tifs.2017.2730822 |
6 | ZHU X S, QIAN Y J, ZHAO X F, et al. A deep learning approach to patch-based image inpainting forensics[J]. Signal Processing: Image Communication, 2018, 67: 90-99. 10.1016/j.image.2018.05.015 |
7 | KUMAR N, MEENPAL T. Semantic segmentation-based image inpainting detection[M]// FAVORSKAYA M N, MEKHILEF S, PANDEY R K, et al. Innovations in Electrical and Electronic Engineering, LNEE 661. Singapore: Springer, 2021: 665-677. 10.1007/978-981-15-4692-1_51 |
8 | ZHU X S, QIAN Y J, ZHAO X F, et al. A deep learning approach to patch-based image inpainting forensics[J]. Signal Processing: Image Communication, 2018, 67: 90-99. 10.1016/j.image.2018.05.015 |
9 | WU Y, ABDALMAGEED W, NATARAJAN P. ManTra-Net: manipulation tracing network for detection and localization of image forgeries with anomalous features[C]// Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019: 9535-9544. 10.1109/cvpr.2019.00977 |
10 | LI H D, HUANG J W. Localization of deep inpainting using high-pass fully convolutional network[C]// Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2019: 8300-8309. 10.1109/iccv.2019.00839 |
11 | GE S M, LI C Y, ZHAO S W, et al. Occluded face recognition in the wild by identity-diversity inpainting[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2020, 30(10): 3387-3397. 10.1109/tcsvt.2020.2967754 |
12 | SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[EB/OL]. (2015-04-10) [2021-12-12].. |
13 | LIN T Y, DOLLÁR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 936-944. 10.1109/cvpr.2017.106 |
14 | BOCHKOVSKIY A, WANG C Y, LIAO H Y M. YOLOv4: optimal speed and accuracy of object detection[EB/OL]. (2020-04-23) [2022-02-26].. |
15 | 朱新山,钱永军,孙彪,等. 基于深度神经网络的图像修复取证算法[J]. 光学学报, 2018, 38(11): No.1110005. 10.3788/aos201838.1110005 |
ZHU X S, QIAN Y J, SUN B, et al. Image inpainting forensics algorithm based on deep neural network[J]. Acta Optica Sinica, 2018, 38(11): No.1110005. 10.3788/aos201838.1110005 | |
16 | YU J, LIN Z, YANG J, et al. Generative image inpainting with contextual attention[C]// Proceedings of the 2018 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 5505-5514. 10.1109/cvpr.2018.00577 |
17 | WU H W, ZHOU J T. GIID-Net: generalizable image inpainting detection via neural architecture search and attention[EB/OL]. (2021-01-29)[2022-02-26].. 10.1109/icip42928.2021.9506778 |
18 | YAN Z Y, LI X M, LI M, et al. Shift-Net: image inpainting via deep feature rearrangement[C]// Proceedings of the 2018 European Conference on Computer Vision, LNCS 11218. Cham: Springer, 2018: 3-19. |
19 | DENG J, DONG W, SOCHER R, et al. ImageNet: a large-scale hierarchical image database[C]// Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2009:248-255. 10.1109/cvpr.2009.5206848 |
20 | IIZUKA S, SIMO-SERRA E, ISHIKAWA H. Globally and locally consistent image completion[J]. ACM Transactions on Graphics, 2017, 36(4): No.107. 10.1145/3072959.3073659 |
21 | WU H W, ZHOU J T, LI Y M. Deep generative model for image inpainting with local binary pattern learning and spatial attention[J]. IEEE Transactions on Multimedia, 2022, 24: 4016-4027. 10.1109/tmm.2021.3111491 |
22 | YU T, GUO Z Y, JIN X, et al. Region normalization for image inpainting[C]// Proceedings of the 34th AAAI Conference on Artificial Intelligence. Palo Alto, CA: AAAI Press, 2020: 12733-12740. 10.1609/aaai.v34i07.6967 |
23 | NAZERI K, NG E, JOSEPH T, et al. EdgeConnect: generative image inpainting with adversarial edge learning[EB/OL]. (2019-01-11) [2022-02-26].. 10.1109/iccvw.2019.00408 |
[1] | 邹斌, 张聪. 基于Faster R-CNN的密集人群检测算法[J]. 《计算机应用》唯一官方网站, 2023, 43(1): 61-66. |
[2] | 郭子豪, 董乐乐, 曲志坚. 基于改进Faster RCNN的节肢动物目标检测方法[J]. 《计算机应用》唯一官方网站, 2023, 43(1): 88-97. |
[3] | 钟志峰, 夏一帆, 周冬平, 晏阳天. 基于改进YOLOv4的轻量化目标检测算法[J]. 《计算机应用》唯一官方网站, 2022, 42(7): 2201-2209. |
[4] | 刘斌, 李港庆, 安澄全, 王水根, 王建生. 基于多尺度特征融合的红外单目测距算法[J]. 《计算机应用》唯一官方网站, 2022, 42(3): 804-809. |
[5] | 向南, 潘传忠, 虞高翔. 融合优化特征提取结构的目标检测算法[J]. 《计算机应用》唯一官方网站, 2022, 42(11): 3558-3563. |
[6] | 高智勇, 黄金镇, 杜程刚. 基于特征金字塔网络的肺结节检测[J]. 计算机应用, 2020, 40(9): 2571-2576. |
[7] | 谢金衡, 张炎生. 基于深度残差和特征金字塔网络的实时多人脸关键点定位算法[J]. 计算机应用, 2019, 39(12): 3659-3664. |
[8] | 尹立, 林新棋, 陈黎飞. 视频帧内运动目标移除篡改检测算法[J]. 计算机应用, 2018, 38(3): 879-883. |
[9] | 阳帆, 严迪群, 徐宏伟, 王让定, 金超, 向立. 基于噪声一致性的数字语音异源拼接篡改检测算法[J]. 计算机应用, 2017, 37(12): 3452-3457. |
[10] | 郑继明, 苏慧嘉. 基于颜色分量间相关性的图像拼接篡改检测方法[J]. 计算机应用, 2017, 37(10): 2903-2906. |
[11] | 林晶, 黄添强, 赖玥聪, 卢贺楠. 采用量化离散余弦变换系数检测视频单帧连续多次复制粘贴篡改[J]. 计算机应用, 2016, 36(5): 1356-1361. |
[12] | 王兵, 毛倩, 苏栋骐. 基于二维直方图移位的图像认证算法[J]. 计算机应用, 2015, 35(10): 2963-2968. |
[13] | 刘敏 陈志刚 邓小鸿. 基于混沌和脆弱水印的图像篡改检测算法[J]. 计算机应用, 2013, 33(05): 1371-1373. |
[14] | 魏文晗 邓一贵. 基于局部变化性的网页篡改识别模型及方法[J]. 计算机应用, 2013, 33(02): 430-433. |
[15] | 陈宗民 周治平. 噪声方差和纹理复杂度分析的源相机识别[J]. 计算机应用, 2012, 32(06): 1563-1566. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||