计算机应用 ›› 2017, Vol. 37 ›› Issue (2): 546-552.DOI: 10.11772/j.issn.1001-9081.2017.02.0546
周尚波1, 王李平1, 尹学辉2
收稿日期:
2016-08-17
修回日期:
2016-09-26
发布日期:
2017-02-11
出版日期:
2017-02-10
通讯作者:
周尚波,shbzhou@cqu.edu.cn
作者简介:
周尚波(1963-),男,广西宁明人,教授,博士生导师,博士,主要研究方向:视频与图像处理、人工神经网络、非线性动力学;王李平(1981-),男,河南新乡人,博士研究生,主要研究方向:分数阶偏微分方程、非线性动力学、模式识别、图像重构;尹学辉(1986-),男,四川广安人,讲师,博士,主要研究方向:分数阶微积分在图像中的应用、非线性动力学。
基金资助:
ZHOU Shangbo1, WANG Liping1, YIN Xuehui2
Received:
2016-08-17
Revised:
2016-09-26
Online:
2017-02-11
Published:
2017-02-10
Supported by:
摘要: 分数阶偏微分方程在图像处理中的应用已受到了广泛的关注,尤其在图像去噪和图像超分辨率(SR)重建方面,目前的研究成果已显示了分数阶应用的优势与效果。对分数阶微积分在图像处理中的作用进行了分析;介绍并讨论了分数阶偏微分方程在图像去噪和图像超分辨率重建中的相关理论与模型;通过仿真实验表明,基于分数阶偏微分方程的方法在去噪和减少阶梯效应等方面比整数阶偏微分方程更具有优势;最后指出了未来的相关研究问题。
中图分类号:
周尚波, 王李平, 尹学辉. 分数阶偏微分方程在图像处理中的应用[J]. 计算机应用, 2017, 37(2): 546-552.
ZHOU Shangbo, WANG Liping, YIN Xuehui. Applications of fractional partial differential equations in image processing[J]. Journal of Computer Applications, 2017, 37(2): 546-552.
[1] BUADES A, COLL B, MOREL J-M. A review of image denoising algorithms, with a new one[J]. SIAM Journal on Multiscale Modeling & Simulation, 2005, 4(2):490-530. [2] CHAN T F, ESEDOGLU S, PARK F, et al. Recent developments in total variation image restoration[M]//Handbook of Mathematical Models in Computer Vision. Berlin:Springer-Verlag, 2005:1-18. [3] AUBERT G, KORNPROBST P. Mathematical Problems in Image Processing:Partial Differential Equations and the Calculus of Variations[M]. 2nd ed. Berlin:Springer-Verlag, 2006:213-222. [4] MILANFAR P. A tour of modern image filtering[EB/OL].[2016-06-15]. https://users.soe.ucsc.edu/~milanfar/publications/journal/ModernTour_FinalSubmission.pdf. [5] MILANFAR P. A tour of modern image filtering:new insights and methods, both practical and theoretical[J]. IEEE Signal Processing Magazine, 2013, 30(1):106-128. [6] 王大凯,侯榆青,彭进业.图像处理的偏微分方程方法[M].北京:科学出版社,2008:141-159. (WANG D K, HOU Y Q, PENG J Y. Partial Differential Equation Method for Image Processing[M]. Beijing:Scicence Press, 2008:141-159.). [7] RUDIN L I, OSHER S, FATEMIN E. Nonlinear total variation based noise removal algorithms[J]. Physica D:Nonlinear Phenomena, 1992, 60(1/2/3/4):259-268. [8] CHAN T, MARQUINA A, MULET P. High-order total variation-based image restoration[J]. SIAM Journal on Scientific Computing, 2000, 22(2):503-516. [9] DIDAS S. Higher Order Variational Methods for Noise Removal in Signals and Images[D]. Saarbrücken, Germany:Saarland University, 2004:29-42. [10] CHAN T F, ESEDOGLU S, PARK F. A fourth order dual method for staircase reduction in texture extraction and image restoration problems[C]//ICIP 2017:Proceedings of 201017th IEEE International Conference on Image Processing. Piscataway, NJ:IEEE, 2010:4137-4140. [11] LIU X, HUANG L, GUO Z. Adaptive fourth-order partial differential equation filter for image denoising[J]. Applied Mathematics Letters, 2011, 24(8):1282-1288. [12] LYSAKER M, TAI X-C. Iterative image restoration combining total variation minimization and a second-order functional[J]. International Journal of Computer Vision, 2006, 66(1):5-18. [13] LI F, SHEN C, FAN J, et al. Image restoration combining a total variational filter and a fourth-order filter[J]. Journal of Visual Communication and Image Representation, 2007, 18(4):322-330. [14] LYSAKER M, LUNDERVOLD A, TAI X-C. Noise removal using fourth-order partial differential equation with applications to medical magnetic resonance images in space and time[J]. IEEE Transactions on Image Processing, 2003, 12(12):1579-1590. [15] ZHANG J, WEI Z. A class of fractional-order multi-scale variational models and alternating projection algorithm for image denoising[J]. Applied Mathematical Modelling, 2011, 35(5):2516-2528. [16] 郭柏灵,蒲学科,黄凤辉.分数阶偏微分方程及其数值解[M].北京:科学出版社,2011:198-200. (GUO B L, PU X K, HUANG F H. Fractional Partial Differential Equations And Their Numerical Solutions[M]. Beijing:Science Press, 2011:198-200.). [17] BAI J, FENG X-C. Fractional-order anisotropic diffusion for image denoising[J]. IEEE Transactions on Image Processing, 2007, 16(10):2492-2502. [18] 杨柱中,周激流,黄梅,等.基于分数阶微分的边缘检测[J].四川大学学报(工程科学版),2008,40(1):152-157. (YANG Z Z, ZHOU J L, HUANG M, et al. Edge detection based on fractional differential[J]. Journal of Sichuan University (Engineering Science Edition), 2008, 40(1):152-157.). [19] RODIECH R W. Quantitative analysis of cat retinal ganglion cell response to visual stimuli[J]. Vision Research, 1965, 5(12):583-601. [20] 蒲亦非.分数阶微积分在现代信号分析与处理中应用的研究[D].成都:四川大学,2006:14. (PU Y F. Research on application of fractional calculus to latest signal analysis and processing[D]. Chengdu:Sichuan University, 2006:14.). [21] YIN X, ZHOU S. Image structure-preserving denoising based on difference curvature driven fractional nonlinear diffusion[J]. Mathematical Problems in Engineering, 2015, 2015:Article ID 930984. [22] YIN X H, ZHOU S B, SIDDIQUE M A. Fractional nonlinear anisotropic diffusion with p-Laplace variation method for image restoration[J]. Multimedia Tool and Applications, 2016, 75(8):4505-4526. [23] ZHANG W, LI J, YANG Y. Spatial fractional telegraph equation for image structure preserving denoising[J]. Signal Processing, 2015, 107:368-377. [24] TIAN D, XUE D, WANG D. A fractional-order adaptive regularization primal-dual algorithm for image denoising[J]. Information Sciences, 2015, 296:147-159. [25] 黄果,许黎,陈庆利,等.基于时间-空间分数阶偏微分方程的图像去噪模型[J].系统工程与电子技术,2012,34(8):1741-1752. (HUANG G, XU L, CHEN Q L, et al. Research on image denoising based on time-space fractional partial differential equations[J]. Systems Engineering and Electronics, 2012, 34(8):1741-1752.). [26] SHKVARKO Y V, TUXPAN J. SANTOS S R. l2-l1 structured descriptive experiment design regularization based enhancement of fractional SAR imagery[J]. Signal Processing, 2013, 93(12):3553-3566. [27] 张鑫,王卫星,张元方,等.基于分数阶微分及改进Retinex的模糊航空图像增强[J].计算机应用研究,2015,32(9):2844-2848. (ZHANG X. WANG W X. ZHANG Y F, et al. Vague aerial image enhancement on fractional differential and improved Retinex[J]. Application Research of Computers, 2015, 32(9):2844-2848.). [28] 牛金龙,周激流.基于分数阶图像增强的P-M模型[J].通信技术,2010, 43(2):74-76. (NIU J L, ZHOU J L. P-M diffusion model based on fractional-order image enhancement[J]. Communications Technology, 2010, 43(2):74-76. [29] REN Z, HE C, ZHANG Q. Fractional order total variation regularization for image super-resolution[J]. Signal Processing, 2013, 93(9):2048-2421. [30] CHEN G, ZHANG J, LI D. Fractional-order total variation combined with sparsifying transforms for compressive sensing sparse image reconstruction[J]. Journal of Visual Communication and Image Representation, 2016, 38:407-422. [31] ZACHEVSKY I, ZEEVI Y Y. Single-image super resolution of natural stochastic textures based on fractional Brownian motion[J]. IEEE Transactions on Image Processing, 2014, 23(5):2096-2108. [32] WANG L P, ZHOU S B, AWUDU K. Image zooming technique based on the split Bregman iteration with fractional order variation regularization[J]. The International Arab Journal of Information Technology, 2016, 13(6A):944-950. [33] WANG L, ZHOU S, AWUDU K. Super-resolution image reconstruction method using homotopy regularization[J]. Multimedia Tools and Applications, 2016, 75(23):15993-16016. [34] PERONA P, MALIK J. Scale-space and edge detection using anisotropic diffusion[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1990, 12(7):629-639. [35] YOU Y-L, XU W, TANNENBAUM A, et al. Behavioral analysis of anisotropic diffusion in image processing[J]. IEEE Transactions on Image Processing, 1996, 5(11):1539-1553. [36] GUIDOTTI P, LAMBERS J V. Two new nonlinear nonlocal diffusions for noise reduction[J]. Journal of Mathematical Imaging and Vision, 2009, 33(1):25-37. [37] JANEV M, PILIPOVI ĆS, ATANACHOVIC T, et al. Fully fractional anisotropic diffusion for image denoising[J]. Mathematical and Computer Modelling, 2011, 54(1/2):729-741. [38] 尹学辉.基于分数阶PDE的图像结构保持型去噪算法研究[D].重庆:重庆大学,2015:21-99. (YIN X H. Research on fractional-order PDE based image structure-preserving denoising algorithms[D]. Chongqing:Chongqing University, 2015:21-99.). [39] ZENZO S D. A note on the gradient of a multi-image[J]. Computer Vision, Graphics, and Image Processing, 1986, 33(1):116-125. [40] FÖRSTNER W, GVLCH E. A fast operator for detection and precise location of distinct points, corners and centres of circular features[C]//Proceedings of the 1987 ISPRS Intercommission Conference on Fast Processing of Photogrammetric Data. Interlaken, Switzerland:[s.n.], 1987:281-305. [41] WEICKERT J. Anisotropic Diffusion in Image Processing[M]. Teubner-Verlag, Stuttgart, Germany:B. G. Teubner Stuttgart, 1998:56. [42] WEICKERT J, SCHNÖRR C. A theoretical framework for convex regularizers in PDE-based computation of image motion[J]. International Journal of Computer Vision, 2001, 45(3):245-264. [43] WEICKERT J. Anisotropic diffusion filters for image processing based quality control[C]//Proceedings of the 7th European Conference on Mathematics in Industry. Teubner, Stuttgart:[s.n.], 1994:355-362. [44] LEFKIMMIATIS S, ROUSSORS A, MARAGOS P, et al. Structure tensor total variation[J]. SIAM Journal of Imaging Sciences, 2015, 8(2):1090-1122. [45] LEFKIMMIATIS S, OSHER S. Non-local structure tensor functionals for image regularization[J]. IEEE Transactions on Computational Imaging, 2015, 1(1):16-29. [46] LI H, YU Z, MAO C. Fractional differential and variational method for image fusion and super-resolution[J]. Neurocomputing, 2016, 171:138-148. [47] ZHU W, CHAN T. Image denoising using mean curvature of image surface[J]. SIAM Journal on Imaging Sciences, 2012, 5(1):1-32. [48] 张富平,周尚波,赵灿.基于分数阶偏微分方程的彩色图像去噪新算法[J].计算机应用研究,2013,30(3):946-949. (ZHANG F P, ZHOU S B, ZHAO C. Novel color image denoising method based on fractional-order partial differential equation[J]. Application Research of Computers, 2013, 30(3):946-949.). [49] REN Z, HE C, LI M. Fractional-order bidirectional diffusion for image up-sampling[J]. Journal of Electronic Imaging, 2012, 21(2):023006. [50] LIU Y, FANG Z, LI H, et al. A mixed finite element method for a time-fractional fourth-order partial differential equation[J]. Applied Mathematics and Computation, 2014, 243:703-717. [51] ATANGANA A, BALEANU D. Numerical solution of a kind of fractional parabolic equations via two difference schemes[J]. Abstract & Applied Analysis, 2013, 2013:Article ID 828764. [52] MEERSCHAERT M M, TADJERAN C. Finite difference approximations for fractional advection dispersion equations[J]. Journal of Computational and Applied Mathematics, 2004, 172(1):65-77. [53] ZHANG Y. A finite difference method for fractional partial differential equation[J]. Applied Mathematics and Computation, 2009, 215(2):524-529. [54] TADJERAN C, MEERSCHAERT M M, SCHEFFLER H-P. A second order accurate numerical approximation for the fractional diffusion equation[J]. Journal of Computational Physics, 2016, 213(1):205-213. [55] CHEN C-M, LIU F, TURNER I, et al. A Fourier method for the fractional diffusion equation describing sub-diffusion[J]. Journal of Computational Physics, 2007, 227(2):886-897. [56] YUSTE S B, ACEDO L. An explicit finite difference method and a new von Neumann-type stability analysis for fractional diffusion equations[J]. SIAM Journal of on Numerical Analysis, 2005, 42(5):1862-1874. [57] AL-KHALEDA K, MOMANIB S. An approximate solution for a fractional diffusion-wave equation using the decomposition method[J]. Applied Mathematics and Computation, 2005, 165(2):473-483. [58] SAKTIVEL R, REVATHI P, REN Y. Existence of solutions for nonlinear fractional stochastic differential equations[J]. Nonlinear Analysis:Theory, Methods & Applications, 2013, 81:70-86. [59] BAYOURA B, TORRESB D F M. Existence of solution to a local fractional nonlinear differential equation[J]. Journal of Computational and Applied Mathematics, 2017, 312:127-133. [60] ZHU B, LIU L, WU Y. Existence and uniqueness of global mild solutions for a class of nonlinear fractional reaction-diffusion equations with delay[J/OL]. Computers and Mathematics with Applications, 2016[2016-07-16]. http://www.sciencedirect.com/science/article/pii/S0898122116300244. [61] ATANGANA A. On the stability and convergence of the time-fractional variable order telegraph equation[J]. Journal of Computational Physics, 2015,293:104-114. [62] LI F, LI Z, PI L. Variable exponent functionals in image restoration[J]. Applied Mathematics and Computation, 2010, 216(3):870-882. [63] WEI G W. Generalized Perona-Malik equation for image restoration[J]. IEEE Signal Processing Letters, 1999, 6(7):165-167. [64] TSENG C-C, PEI S-C, HSIA S-C. Computation of fractional derivatives using Fourier transform and digital FIR differentiator[J]. Signal Processing, 2000, 80(1):151-159. [65] TAI Y-W, LIU S, BROWN M S, et al. Super resolution using edge prior and single image detail synthesis[C]//CVPR 2010:Proceedings of the 2010 IEEE Computer Vision and Pattern Recognition. Washington, DC:IEEE Computer Society, 2010:2400-2407. [66] MARQUINA A, OSHER S J. Image super-resolution by TV regularization and Bregman iteration[J]. Journal of Scientific Computing, 2008, 37(3):367-382. |
[1] | 丁宇伟, 石洪波, 李杰, 梁敏. 基于局部和全局特征解耦的图像去噪网络[J]. 《计算机应用》唯一官方网站, 2024, 44(8): 2571-2579. |
[2] | 侯瑞峰, 张鹏程, 张丽媛, 桂志国, 刘祎, 张浩文, 王书斌. 基于全变分正则项展开的迭代去噪网络[J]. 《计算机应用》唯一官方网站, 2024, 44(3): 916-921. |
[3] | 王朋博, 单武扬, 李军, 田茂, 邹登, 范占锋. 抗高强度椒盐噪声的鲁棒拼接取证算法[J]. 《计算机应用》唯一官方网站, 2024, 44(10): 3177-3184. |
[4] | 刘安阳, 赵怀慈, 蔡文龙, 许泽超, 解瑞灯. 基于主动判别机制的自适应生成对抗网络图像去模糊算法[J]. 《计算机应用》唯一官方网站, 2023, 43(7): 2288-2294. |
[5] | 韩林凯, 姚江伟, 王坤峰. 保留梯度和轮廓的可见光与红外图像融合[J]. 《计算机应用》唯一官方网站, 2023, 43(11): 3574-3578. |
[6] | 胡紫琪, 谢凯, 文畅, 李美然, 贺建飚. 生成对抗网络下的低剂量CT图像增强[J]. 《计算机应用》唯一官方网站, 2023, 43(1): 280-288. |
[7] | 靳华中, 张修洋, 叶志伟, 张闻其, 夏小鱼. 基于近似U型网络结构的图像去噪模型[J]. 《计算机应用》唯一官方网站, 2022, 42(8): 2571-2577. |
[8] | 陶永鹏, 景雨, 顼聪. 基于分组字典与变分模型的图像去噪算法[J]. 计算机应用, 2019, 39(2): 551-555. |
[9] | 张雯雯, 韩裕生. 基于非局部自相似性的低秩稀疏图像去噪[J]. 《计算机应用》唯一官方网站, 2018, 38(9): 2696-2700. |
[10] | 郭黎, 廖宇, 李敏, 袁海林, 李军. 自适应非局部数据保真项和双边总变分的图像去噪模型[J]. 计算机应用, 2017, 37(8): 2334-2342. |
[11] | 徐苏, 周颖玥. 基于图像分割的非局部均值去噪算法[J]. 计算机应用, 2017, 37(7): 2078-2083. |
[12] | 彭政, 陈东方, 王晓峰. 正则化超分辨率重建过程的自适应阈值去噪[J]. 计算机应用, 2017, 37(7): 2084-2088. |
[13] | 孙少超. 基于带权核范数最小化和混合高斯模型的去噪模型[J]. 计算机应用, 2017, 37(5): 1471-1474. |
[14] | 张新明, 康强, 程金凤, 涂强. 采用自适应四点窗中点滤波的高椒盐噪声滤除方法[J]. 计算机应用, 2017, 37(3): 832-838. |
[15] | 张新明, 程金凤, 康强, 王霞. 迭代自适应权重均值滤波的图像去噪[J]. 计算机应用, 2017, 37(11): 3168-3175. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||