《计算机应用》唯一官方网站 ›› 2023, Vol. 43 ›› Issue (11): 3574-3578.DOI: 10.11772/j.issn.1001-9081.2022101553
所属专题: 多媒体计算与计算机仿真
Linkai HAN, Jiangwei YAO, Kunfeng WANG()
摘要:
为了解决可见光与红外图像采用基础拉普拉斯融合(Laplacian Blending)时,存在热源物体的轮廓不清晰以及曝光严重区域图像内容缺失的问题,提出一种保留红外轮廓与梯度信息的图像融合方法。首先,对输入图像进行颜色空间转换和自适应形态学去噪,并将两幅图像的梯度对比和红外图像突出目标的轮廓作为像素活动信息的权值;其次,同时分解权值与输入图像,并采用基于相似度的比较调整权重分配;最后,重构图像并转换颜色空间。在主观评价中,所提方法未产生伪影和怪异色彩,图像中的发热目标轮廓清晰;在客观评价指标中,该方法的熵(EN)为7.49,边缘梯度(EI)为74.61,平均梯度(AG)为7.23,与传统多尺度变换方法(包括非下采样轮廓波变换(NSCT)方法和基于非下采样剪切波变换(NSST)多尺度熵方法)和深度学习方法(结合残差网络(ResNet)与零相位分量分析(ZCA)的图像融合方法)相比,它的EN分别提升了0.10、0.58和0.75,EI分别提升了6.65、20.35和37.35,AG分别提升了0.73、2.19和3.55;而且它在Intel i5系列计算机上的处理速度达到5 frame/s,计算复杂度低。
中图分类号: