计算机应用 ›› 2017, Vol. 37 ›› Issue (3): 760-765.DOI: 10.11772/j.issn.1001-9081.2017.03.760

• 先进计算 • 上一篇    下一篇

多交互式人工蜂群算法及其收敛性分析

林凯, 陈国初, 张鑫   

  1. 上海电机学院 电气学院, 上海 200240
  • 收稿日期:2016-09-18 修回日期:2016-10-26 出版日期:2017-03-10 发布日期:2017-03-22
  • 通讯作者: 林凯
  • 作者简介:林凯(1992-),男,浙江温州人,硕士研究生,主要研究方向:风电场优化调度、群智能算法;陈国初(1971-),男,江西九江人,教授,博士,主要研究方向:复杂系统建模仿真及优化与控制、风能资源评估与预测、风电功率预测;张鑫(1991-),女,湖北枣阳人,硕士,主要研究方向:风电功率预测、群智能算法。
  • 基金资助:
    上海市教委科研创新项目(13YZ140)。

Multiple interactive artificial bee colony algorithm and its convergence analysis

LIN Kai, CHEN Guochu, ZHANG Xin   

  1. School of Electrical Engineering, Shanghai Dianji University, Shanghai 200240, China
  • Received:2016-09-18 Revised:2016-10-26 Online:2017-03-10 Published:2017-03-22
  • Supported by:
    This work is partially supported by Research Innovation Project of Shanghai Education Department (13YZ140).

摘要: 针对人工蜂群(ABC)算法不易跳出局部最优解的缺点,提出了多交互式人工蜂群(MIABC)算法。该算法在基本人工蜂群算法的基础上引入随机邻域搜索策略,结合跨维搜索策略,且改进蜜蜂越限处理方式,使得算法搜索方式多样化,从而使得算法搜索更具跳跃性,不易陷入局部最优解,同时,对其进行收敛性分析和性能测试。在五种经典基准测试函数和时间复杂度实验上的仿真结果表明,相对于标准人工蜂群算法和基本粒子群优化(PSO)算法,该算法在1E-2精度下收敛速度提高了约30%和65%,搜索精度更优,且在高维求解问题方面有明显优势。

关键词: 人工蜂群算法, 跨维度搜索策略, 随机邻域搜索策略, 搜索精度, 收敛性分析

Abstract: Aiming at the shortcomings of Artificial Bee Colony (ABC) algorithm, which is not easy to jump out of the local optimal value, a Multiple Interactive Artificial Bee Colony (MIABC) algorithm was proposed. The proposed algorithm was based on the basic ABC algorithm, involved the random neighborhood search strategy and the cross-dimensional search strategy, and improved the treatment when bees exceed the limit, so the search way of the algorithm became various, the algorithm itself had stronger bound and it's hard to trap in the local optimal value. Meanwhile, the convergence analysis and performance test were carried out. The simulation result based on five kinds of classic benchmark functions and experimental results for time complexity show that comparing with the standard ABC algorithm and basic Particle Swarm Optimization (PSO), this proposed method has faster convergence speed which is increased by about 30% and 65% at 1E-2 accuracy and better search precision, besides, it has significant advantages in solving high dimensional problems.

Key words: Artificial Bee Colony (ABC) algorithm, cross-dimensional search strategy, stochastic neighborhood search strategy, search precision, convergence analysis

中图分类号: