[1] 朝乐门, 邢春晓, 张勇. 数据科学研究的现状与趋势[J]. 计算机科学, 2018, 45(1):1-13.(CHAO L M,XING C X,ZHANG Y. Data science studies:state-of-the-art and trends[J]. Computer Science,2018,45(1):1-13.) [2] CAO L. Data science:acomprehensive overview[J]. ACM Computing Surveys,2017,50(3):Article No. 43. [3] WANG L,DONG M. Multi-level low-rank approximation-based spectral clustering for image segmentation[J]. Pattern Recognition Letters,2012,33(16):2206-2215. [4] 周莉莉, 姜枫. 图像分割方法综述研究[J]. 计算机应用研究, 2017, 34(7):1921-1928.(ZHOU L L,JIANG F. Survey on image segmentation methods[J]. Application Research of Computers, 2017,34(7):1921-1928.) [5] NIE F, ZHU W, LI X. Unsupervised feature selection with structured graph optimization[C]//Proceedings of the 201630th AAAI Conference on Artificial Intelligence. Palo Alto:AAAI Press,2016:1302-1308. [6] WANG Q,ZHANG F,LI X. Optimal clustering framework for hyperspectral band selection[J]. IEEE Transaction on Geoscience and Remote Sensing,2018,56(10):5910-5922. [7] GU G,HOU Z,CHEN C,et al. A dimensionality reduction method based on structured sparse representation for face recognition[J]. Artificial Intelligence Review,2016,46(4):431-443. [8] 管涛, 李玉玲. 大规模矩阵降维的随机逼近方法[J]. 数学的实践与认识, 2016, 46(24):184-193.(GUAN T,LI Y L. Stochastic approximation approaches of large-scale matrix dimension reduction[J]. Mathematic in Practice and Theory, 2016, 46(24):184-193.) [9] WU J,XIONG H,CHEN J. Towards understanding hierarchical clustering:a data distribution perspective[J]. Neurocomputing, 2009,72(10/11/12):2319-2330. [10] NAGPAL A, JATAIN A, GAUR D. Review based on data clustering algorithms[C]//Proceedings of the 2013 IEEE Conference on Information and Communication Technologies. Piscataway:IEEE,2013:298-303. [11] WU J,LIU H,XIONG H,et al. K-means-based consensus clustering:a unified view[J]. IEEE Transactions on Knowledge and Data Engineering,2015,27(1):155-169. [12] WANG Y,CHEN L. Multi-view fuzzy clustering with minimax optimization for effective clustering of data from multiple sources[J]. Expert Systems with Applications,2017,72:457-466. [13] KADIR S N, GOODMAN D F M, HARRIS K D. Highdimensional cluster analysis with the masked EM algorithm[J]. Neural Computation,2014,26(11):2379-2394. [14] YANG Y,MA Z,YANG Y,et al. Multitask spectral clustering by exploring intertask correlation[J]. IEEE Transactions on Cybernetics,2015,45(5):1083-1094. [15] NG A Y,JORDAN M I,WEISS Y. On spectral clustering:analysis and an algorithm[C]//Proceedings of the 200114th International Conference on Neural Information Processing Systems. Cambridge:MIT Press,2001:849-856. [16] VON LUXBURG U. A tutorial on spectral clustering[J]. Statistics and Computing,2007,17(4):395-416. [17] FOWLKES C,BELONGIE S,CHUNG F,et al. Spectral grouping using the Nyström method[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2004,26(2):214-225. [18] 丁世飞, 贾洪杰, 史忠植. 基于自适应Nyström采样的大数据谱聚类算法[J]. 软件学报, 2014, 25(9):2037-2049.(DING S F, JIA H J,SHI Z Z. Spectral clustering algorithm based on adaptive Nyström sampling for big data analysis[J]. Journal of Software, 2014,25(9):2037-2049.) [19] CHEN X,CAI D. Large scale spectral clustering via landmarkbased sparse representation[C]//Proceedings of the 201125th AAAI Conference on Artificial Intelligence. Palo Alto:AAAI Press,2011:313-318. [20] MARTIN L, LOUKAS A, VANDERGHEYNST P. Fast approximate spectral clustering for dynamicnetworks[C]//Proceedings of the 201835th International Conference on Machine Learning. New York:International Machine Learning Society, 2018:3423-3432. [21] 叶茂, 刘文芬. 基于快速地标采样的大规模谱聚类算法[J]. 电子与信息学报, 2017, 39(2):278-284.(YE M,LIU W F. Large scale spectral clustering based on fast landmark sampling[J]. Journal of Electronics and Information Technology,2017,39(2):278-284.) [22] CHEN W Y,SONG Y,BAI H,et al. Parallel spectral clustering in distributed systems[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2011,33(3):568-586. [23] 张涛, 唐振民, 吕建勇. 一种基于低秩表示的子空间聚类改进算法[J]. 电子与信息学报, 2016, 38(11):2811-2818.(ZHANG T, TANG Z M,LYU J Y. Improved algorithm based on low rank representation for subspace clustering[J]. Journal of Electronics and Information Technology,2016,38(11):2811-2818.) [24] GALLIER J. Spectral theory of unsigned and signed graphs applications to graph clustering:a survey[J]. Computing Research Repository,2016,16(4):1601-692. [25] SHI J,MALIK J. Normalized cuts and image segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000,22(8):888-905. [26] NIE F,DING C,LUO D,et al. Improved minmax cut graph clustering with nonnegative relaxation[C]//Proceedings of the 2010 Joint European Conference on Machine Learning and Knowledge Discovery in Databases, LNCS 6322. Berlin:Springer,2010:451-466. [27] TÜRKMEN A C. A review of nonnegative matrix factorization methods for clustering[EB/OL].[2020-05-10]. https://www.researchgate.net/profile/Ali_Caner_Turkmen/publication/280062357_A_Review_of_Nonnegative_Matrix_Factorization_Methods_for_Clustering/links/57fd28a908ae49db475537b0.pdf. [28] DING C H Q,LI T,JORDAN M I. Convex and semi-nonnegative matrix factorizations[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2008,32(1):45-55. [29] LEE D D,SEUNG H S. Algorithms for non-negative matrix factorization[C]//Proceedings of the 200013th International Conference on Neural Information Processing Systems. Cambridge:MIT Press,2000:535-541. [30] LEE D D,SEUNG H S. Unsupervised learning by convex and conic coding[C]//Proceedings of the 19969th International Conference on Neural Information Processing Systems. Cambridge:MIT Press,1996:515-521. [31] CRAVEN M,DIPASQUO D,FREITAG D,et al. Learning to extract symbolic knowledge from the World Wide Web[C]//Proceedings of the 199815th National on Artificial Intelligence/10th Conference on Innovative Applications of Artificial Intelligence. Palo Alto:AAAI Press,1998:509-516. [32] SEMERTZIDIS T,RAFAIIDIS D,STRINTZIS M G,et al. Largescale spectral clustering based on pairwise constraints[J]. Information and Management,2015,51(5):616-624. [33] ZELNIK-MANOR L,PERONA P. Self-tuning spectral clustering[C]//Proceedings of the 200417th International Conference on Neural Information Processing Systems. Cambridge:MIT Press, 2004:1601-1608. |