[1] TAN X, TRIGGS B. Enhanced local texture feature sets for face recognition under difficult lighting conditions[J]. IEEE Transactions on Image Processing, 2010, 19(6):1635-1650. [2] HUANG G B, RAMESH M, BERG T, et al. Labeled faces in the wild:a database for studying face recognition in unconstrained environments[R]. Cambridge:University of Massachusetts, 2007:49. [3] GÜNTHER M, COSTA-PAZO A, DING C, et al. The 2013 face recognition evaluation in mobile environment[C]//ICB 2013:Proceedings of the 2013 International Conference on Biometrics. Piscataway, NJ:IEEE, 2013:1-7. [4] ZHANG W, SHAN S, GAO W, et al. Local Gabor Binary Pattern Histogram Sequence (LGBPHS):a novel non-statistical model for face representation and recognition[C]//ICCV'05:Proceedings of the Tenth IEEE International Conference on Computer Vision. Washington, DC:IEEE Computer Society, 2005, 1:786-791. [5] ASTHANA A, MARKS T K, JONES M J, et al. Fully automatic pose-invariant face recognition via 3D pose normalization[C]//ICCV'11:Proceedings of the 2011 International Conference on Computer Vision. Washington, DC:IEEE Computer Society, 2011:937-944. [6] HO H T, CHELLAPPA R. Pose-invariant face recognition using Markov random fields[J]. IEEE Transactions on Image Processing, 2013, 22(4):1573-1584. [7] ZHU Z, LUO P, WANG X, et al. Deep learning identity-preserving face space[C]//ICCV'13:Proceedings of the 2013 IEEE International Conference on Computer Vision. Washington, DC:IEEE Computer Society, 2013:113-120. [8] ZHU Z, LUO P, WANG X, et al. Multi-view perceptron:a deep model for learning face identity and view representations[C]//NIPS 2014:Advances in Neural Information Processing Systems. Cambridge, MA:MIT Press, 2014:217-225. [9] BENGIO Y. Learning deep architectures for AI[J]. Foundations and Trends in Machine Learning, 2009, 2(1):1-127. [10] KAN M, SHAN S, CHANG H, et al. Stacked Progressive Auto-Encoders (SPAE) for face recognition across poses[C]//CVPR'14:Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition.Washington, DC:IEEE Computer Society, 2014:1883-1890. [11] SHIELDS T J, AMER M R, EHRLICH M, et al. Action-affect classification and morphing using multi-task representation learning[J/OL]. arXiv preprint arXiv:1603.06554, 2016[2016-03-21]. https://arxiv.org/abs/1603.06554. [12] ARGYRIOU A, EVGENIOU T, PONTIL M. Multi-task feature learning[C]//NIPS 2006:Advances in Neural Information Processing Systems. Cambridge, MA:MIT Press, 2007, 19:41-48. [13] HOSSEINI-ASL E, ZURADA J M, NASRAOUI O. Deep learning of part-based representation of data using sparse autoencoders with nonnegativity constraints[J]. IEEE Transactions on Neural Networks and Learning Systems, 2015, 27(12):1-13. [14] BELHUMEUR P N, HESPANHA J P, KRIEGMAN D J. Eigenfaces vs. fisherfaces:recognition using class specific linear projection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1997, 19(7):711-720. [15] NAIR V, HINTON G E. Rectified linear units improve restricted Holtzmann machines[C]//ICML-10:Proceedings of the 27th International Conference on Machine Learning. Haifa:Omnipress, 2010:807-814. [16] GRAVELINES C. Deep learning via stacked sparse autoencoders for automated voxel-wise brain parcellation based on functional connectivity[D]. Ontario, Canada:The University of Western Ontario, 2014:1-76. [17] LEE H, EKANADHAM C, NG A Y. Sparse deep belief net model for visual area V2[C]//NIPS 2007:Advances in Neural Information Processing Systems. Cambridge, MA:MIT Press, 2008:873-880. [18] NG A, NGIAM J, FOO C Y, et al. UFLDL Tutorial[EB/OL]. (2013-04-07)[2016-08-26].http://deeplearning.stanford.edu/wiki/index.php/Gradient_checking_and_advanced_optimization. [19] GROSS R, MATTHEWS I, COHN J, et al. The CMU multi-pose, illumination, and expression (Multi-PIE) face database, TR-07-08[R]. Pittsburgh:CMU Robotics Institute, 2007. [20] 李航.统计学习方法[M].北京:清华大学出版社,2012:14-15. (LI H. Statical Learning Methods[M]. Beijing:Tsinghua University Press, 2012:14-15.) |