[1] KOCH R, MAY S, MURMANN P, et al. Identification of transparent and specular reflective material in laser scans to discriminate affected measurements for faultless robotic SLAM[J]. Robotics and Autonomous Systems, 2016, 87:296-312. [2] 宋宇, 李庆玲, 康轶非, 等. 平方根容积Rao-Blackwillised粒子滤波SLAM算法[J]. 自动化学报, 2014, 40(2):357-367.(SONG Y, LI Q L, KANG Y F, et al. SLAM with square-root cubature Rao-Blackwillised particle filter[J]. Acta Automatica Sinica, 2014, 40(2):357-367.) [3] FOSSEL J D, TUYLS K, STURM J. 2D-SDF-SLAM:a signed distance function based SLAM frontend for laser scanners[C]//Proceedings of the 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway, NJ:IEEE, 2015:1949-1955. [4] 张文玲, 朱明清, 陈宗海. 基于强跟踪UKF的自适应SLAM算法[J]. 机器人, 2010, 32(2):190-195.(ZHANG W L, ZHU M Q, CHEN Z H. An adaptive SLAM algorithm based on strong tracking UKF[J]. Robot, 2010, 32(2):190-195.) [5] 张毅, 汪龙峰, 余佳航. 基于深度信息的移动机器人室内环境三维地图创建[J]. 计算机应用, 2014, 34(12):3438-3440.(ZHANG Y, WANG L F, YU J H. Depth-image based 3D map reconstruction of indoor environment for mobile robots[J]. Journal of Computer Applications, 2014, 34(12):3438-3440.) [6] HENRY P, KRAININ M, HERBST E, et al. RGB-D mapping:using depth cameras for dense 3D modeling of indoor environments[C]//Proceedings of the 12th International Symposium on Experimental Robotics. Berlin:Springer, 2010:22-25. [7] 王可, 贾松敏, 徐涛, 等. 基于混合位姿估计模型的移动机器人三维地图创建方法[J]. 控制与决策, 2015, 30(8):1504-1508.(WANG K, JIA S M, XU T, et al. Mobile robot 3D map building based on hybrid pose estimation model[J]. Control and Decision, 2015, 30(8):1504-1508.) [8] BRIALES J, GONZÁLEZ-JIMÉNEZ J. Fast global optimality verification in 3D SLAM[EB/OL].[2016-06-20].http://www.riuma.uma.es/xmlui/bitstream/handle/10630/12249/main.pdf?sequence=3. [9] ENGELHARD N, ENDRES F, HESS J, et al. Real-time 3D visual SLAM with a hand-held RGB-D camera[EB/OL].[2016-06-20].http://vision.in.tum.de/_media/spezial/bib/engelhard11euron.pdf. [10] FIORAIO N, KONOLIGE K. Real-time visual and point cloud SLAM[EB/OL].[2016-06-20].http://dosen.narotama.ac.id/wp-content/uploads/2015/02/Realtime-visual-and-point-cloud-slam.pdf. [11] HERBERT M, CAILLAS C, KROTKOV E, et al. Terrain mapping for a roving planetary explorer[C]//Proceedings of the 1989 IEEE International Conference on Robotics and Automation. Piscataway, NJ:IEEE, 1989:997-1002. [12] BAIRD C A. Elevation map-referenced mechanism for updating vehicle navigation system estimates:U.S. Patent 4939663[P]. 1990-07-03. [13] MARTIN C, THRUN S. Real-time acquisition of compact volumetric 3D maps with mobile robots[C]//Proceedings of the 2002 IEEE International Conference on Robotics and Automation. Piscataway, NJ:IEEE, 2002:311-316. [14] LI X, GUO X, WANG H, et al. Harmonic volumetric mapping for solid modeling applications[C]//Proceedings of the 2007 ACM Symposium on Solid and Physical Modeling. New York:ACM, 2007:109-120. [15] PAILLÉ G P, POULIN P. As-conformal-as-possible discrete volumetric mapping[J]. Computers & Graphics, 2012, 36(5):427-433. [16] WURM K M, HORNUNG A, BENNEWITZ M, et al. OctoMap:a probabilistic, flexible, and compact 3D map representation for robotic systems[EB/OL].[2016-06-20].http://first-mm.eu/files/wurm10octomap.pdf. [17] HORNUNG A, WURM K M, BENNEWITZ M, et al. OctoMap:An efficient probabilistic 3D mapping framework based on octrees[J]. Autonomous Robots, 2013, 34(3):189-206. [18] SCHAUWECKER K, ZELL A. Robust and efficient volumetric occupancy mapping with an application to stereo vision[C]//Proceedings of the 2014 IEEE International Conference on Robotics and Automation. Piscataway, NJ:IEEE, 2014:6102-6107. [19] KHOSHELHAM K, ELBERINK S O. Accuracy and resolution of Kinect depth data for indoor mapping applications[J]. Sensors, 2012, 12(2):1437-1454. [20] DRYANOVSKI I, VALENTI R G, XIAO J. Fast visual odometry and mapping from RGB-D data[C]//Proceedings of the 2013 IEEE International Conference on Robotics and Automation. Piscataway, NJ:IEEE, 2013:2305-2310. |