1 |
徐子锋,石超,王永锋,等. 基于 ORB+PROSAC 误匹配剔除算法的视觉SLAM研究[J]. 软件工程, 2019, 22(5): 9-14.
|
|
XU Z F, SHI C, WANG Y F, et al. A study of visual SLAM based on ORB+PROSAC mismatch elimination algorithm[J]. Software Engineering, 2019, 22(5):9-14.
|
2 |
席志红,王洪旭,韩双全. 基于ORB-SLAM2系统的快速误匹配剔除算法与地图构建[J]. 计算机应用, 2020, 40(11):3289-3294.
|
|
XI Z H, WANG H X, HAN S Q. Fast mismatch elimination algorithm and map-building based on ORB-SLAM2 system[J]. Journal of Computer Applications, 2020, 40(11): 3289-3294.
|
3 |
XIAO L H, WANG J G, QIU X S, et al. Dynamic-SLAM: semantic monocular visual localization and mapping based on deep learning in dynamic environment[J]. Robotics and Autonomous Systems, 2019, 117:1-16. 10.1016/j.robot.2019.03.012
|
4 |
MUR-ARTAL R, TARDÓS J D. ORB-SLAM2: an open-source SLAM system for monocular, stereo, and RGB-D cameras[J]. IEEE Transactions on Robotics, 2017, 33(5):1255-1262. 10.1109/tro.2017.2705103
|
5 |
YU C, LIU Z X, LIU X J, et al. DS-SLAM: a semantic visual SLAM towards dynamic environments[C]// Proceedings of the 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway: IEEE, 2018:1168-1174. 10.1109/iros.2018.8593691
|
6 |
BESCOS B, FÁCIL J M, CIVERA J, et al. DynaSLAM: tracking,mapping and inpainting in dynamic scenes[J]. IEEE Robotics and Automation Letters, 2018, 3(4):4076-4083. 10.1109/lra.2018.2860039
|
7 |
房立金,刘博,万应才. 基于深度学习的动态场景语义SLAM[J]. 华中科技大学学报(自然科学版), 2020, 48(1):121-126.
|
|
FANG L J, LIU B, WAN Y C. Semantic SLAM based on deep learning in dynamic scenes[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2020, 48(1): 121-126.
|
8 |
HE K M, GKIOXARI G, DOLLÁR P, et al. Mask R-CNN[C]// Proceedings of the 2017 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2017:2980-2988. 10.1109/iccv.2017.322
|
9 |
WEN S H, LI P J, ZHAO Y J, et al. Semantic visual SLAM in dynamic environment[J]. Autonomous Robots, 2021, 45(4):493-504.
|
10 |
REN X K, WANG Y Y, WANG H X, et al. An improved ORB-SLAM2 algorithm based on image information entropy[J]. Journal of Physics: Conference Series, 2020, 1693: No.012165. 10.1088/1742-6596/1693/1/012165
|
11 |
BOCHKOVSKIY A, WANG C Y, LIAO H Y M. YOLOv4: optimal speed and accuracy of object detection[EB/OL]. (2020-04-23) [2021-04-23]..
|
12 |
BIAN J W, LIN W Y, LIU Y, et al. GMS: grid-based motion statistics for fast, ultra-robust feature correspondence[J]. International Journal of Computer Vision, 2020, 128(6):1580-1593. 10.1007/s11263-019-01280-3
|
13 |
高翔,张涛,刘毅,等. 视觉SLAM十四讲:从理论到实践[M]. 2版. 北京:电子工业出版社, 2019:152-153.
|
|
GAO X, ZHANG T, LIU Y, et al. 14 Lectures on Visual SLAM: From Theory to Practice[M]. 2nd ed. Beijing: Publishing House of Electronics Industry, 2019: 152-153.
|
14 |
席志红,韩双全,王洪旭. 基于语义分割的室内动态场景同步定位与语义建图[J]. 计算机应用, 2019, 39(10):2847-2851.
|
|
XI Z H, HAN S Q, WANG H X. Simultaneous localization and semantic mapping of indoor dynamic scene based on semantic segmentation[J]. Journal of Computer Applications, 2019, 39(10): 2847-2851.
|
15 |
STURM J, ENGELHARD N, ENDRES F, et al. A benchmark for the evaluation of RGB-D SLAM systems[C]// Proceedings of the 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway: IEEE, 2012:573-580. 10.1109/iros.2012.6385773
|
16 |
徐少杰,曹雏清,王永娟. 视觉SLAM在室内动态场景中的应用研究[J]. 计算机工程与应用, 2021, 57(8):175-179. 10.3778/j.issn.1002-8331.2009-0021
|
|
XU S J, CAO C Q, WANG Y J. Application research of visual SLAM in indoor dynamic scenes[J]. Computer Engineering and Applications, 2021, 57(8): 175-179. 10.3778/j.issn.1002-8331.2009-0021
|
17 |
广东工业大学. 一种基于YOLO算法及GMS特征匹配的动态场景SLAM方法:中国, 201911394459.3[P]. 2020-05-15. 10.1158/1538-7445.sabcs19-p2-15-05
|
|
Guangdong University of Technology. Dynamic scene SLAM method based on YOLO algorithm and GMS feature matching: CN, 201911394459.3[P]. 2020-05-15. 10.1158/1538-7445.sabcs19-p2-15-05
|
18 |
FISCHLER M A, BOLLES R C. Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography[J]. Communications of the ACM, 1981, 24(6): 381-395. 10.1145/358669.358692
|