[1] ZHANG Q, LI B X. Discriminative K-SVD for dictionary learning in face recognition[C]//CVPR 2010:Proceedings of the 2010 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway, NJ:IEEE, 2010:2691-2698. [2] YANG M, ZHANG L, FENG X C, et al. Sparse representation based Fisher discrimination dictionary learning for image classification[J]. International Journal of Computer Vision, 2014, 109(3):209-232. [3] CAI S J, ZUO W M, ZHANG L, et al. Support vector guided dictionary learning[C]//ECCV 2014:Proceedings of the 13th European Conference on Computer Vision, LNCS 8692. Berlin:Springer, 2014:624-639. [4] JIANG Z L, LIN Z, DAVIS L S. Label consistent K-SVD:learning a discriminative dictionary for recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(11):2651-2664. [5] LI Z M, LAI Z H, XU Y, et al. A locality-constrained and label embedding dictionary learning algorithm for image classification[J]. IEEE Transactions on Neural Networks and Learning Systems, 2017, 28(2):278-293. [6] 甘岚,张永焕.基于字典学习的正则化鲁棒稀疏表示肿瘤细胞图像识别[J].计算机应用,2016,36(10):2895-2899.(GAN L, ZHANG Y H. Regularized robust coding for tumor cell image recognition based on dictionary learning[J]. Journal of Computer Applications, 2016, 36(10):2895-2899.) [7] ZHANG Y, JIANG Z, DAVIS L S. Learning structured low-rank representations for image classification[C]//CVPR 2013:Proceedings of the 2013 IEEE Conference on Computer Vision and Pattern Recognition. Washington, DC:IEEE Computer Society, 2013:676-683. [8] ZHENG M, BU J, CHEN C, et al. Graph regularized sparse coding for image representation[J]. IEEE Transactions on Image Processing, 2011, 20(5):1327-1336. [9] WRIGHT J, YANG A Y, GANESH A, et al. Robust face recognition via sparse representation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2009, 31(2):210-227. [10] ZHANG L, YANG M, FENG X C. Sparse representation or collaborative representation:which helps face recognition?[C]//ICCV 2011:Proceedings of the 2011 IEEE International Conference on Computer Vision. Washington, DC:IEEE Computer Society, 2011:471-478. [11] MARTINEZA M, BENAVENTE R. The AR face database, TR #24[R]. Barcelona, Spain:Computer Vision Center, 1998. [12] HUANG G B, RAMESH M, BERG T, et al. Labeled faces in the wild:a database for studying face recognition in unconstrained environments, TR 07-49[R]. Amherst, MA:University of Massachusetts Amherst, 2007. [13] PHILLIPS P J, MOON H, RIZVI S A, et al. The FERET evaluation methodology for face recognition algorithms[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 22(10):1090-1104. [14] YANG J, ZHANG D, YANG J Y, et al. Globally maximizing, locally minimizing:unsupervised discriminant projection with applications to face and palm biometrics[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2007, 29(4):650-664. [15] SANDERSON C, LOVELL B C. Multi-region probabilistic histograms for robust and scalable identity inference[C]//ICB 2009:Proceedings of the Third Edition of the International Conference on Biometrics, LNCS 5558. Berlin:Springer, 2009:199-208. [16] WANG S J, YANG J, SUN M F, et al. Sparse tensor discriminant color space for face verification[J]. IEEE Transactions on Neural Networks and Learning Systems, 2012, 23(6):876-888. [17] XU Y, ZHU X J, LI Z M, et al. Using the original and symmetrical face training samples to perform representation based two-step face recognition[J]. Pattern Recognition, 2013, 46(4):1151-1158. |