| 1 | KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks[C]// Proceedings of the 25th International Conference on Neural Information Processing Systems. Red Hook, NY: Curran Associates Inc., 2012: 1097-1105. | 
																													
																						| 2 | SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition [EB/OL]. (2015-04-10) [2021-12-26]. . | 
																													
																						| 3 | HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition [C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 770-778.  10.1109/cvpr.2016.90 | 
																													
																						| 4 | HOWARD A G, ZHU M L, CHEN B, et al. MobileNets: efficient convolutional neural networks for mobile vision applications [EB/OL]. (2017-04-17) [2021-11-22]. .  10.48550/arXiv.1704.04861 | 
																													
																						| 5 | REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection [C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 779-788.  10.1109/cvpr.2016.91 | 
																													
																						| 6 | REN S Q, HE K M, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[C]// Proceedings of the 28th International Conference on Neural Information Processing Systems. Cambridge: MIT Press, 2015: 91-99. | 
																													
																						| 7 | 张瑶,卢焕章,张路平,等.基于深度学习的视觉多目标跟踪算法综述[J].计算机工程与应用,2021,57(13):55-66. | 
																													
																						|  | ZHANG Y, LU H Z, ZHANG L P, et al. Overview of visual multi-object tracking algorithms with deep learning [J]. Computer Engineering and Applications, 2021, 57(13): 55-66. | 
																													
																						| 8 | 徐辉,祝玉华,甄彤,等.深度神经网络图像语义分割方法综述[J].计算机科学与探索,2021,15(1):47-59.  10.3778/j.issn.1673-9418.2004039 | 
																													
																						|  | XU H, ZHU Y H, ZHEN T, et al. Survey of image semantic segmentation methods based on deep neural network [J]. Journal of Frontiers of Computer Science and Technology, 2021, 15(1): 47-59.  10.3778/j.issn.1673-9418.2004039 | 
																													
																						| 9 | RUSSAKOVSKY O, DENG J, SU H, et al. ImageNet large scale visual recognition challenge [J]. International Journal of Computer Vision, 2015, 115(3): 211-252.  10.1007/s11263-015-0816-y | 
																													
																						| 10 | ALLEN-ZHU Z, LI Y Z, SONG Z. A convergence theory for deep learning via over-parameterization[C]// Proceedings of the 36th International Conference on Machine Learning. New York: JMLR.org, 2019: 242-252. | 
																													
																						| 11 | ARORA S, COHEN N, HAZAN E. On the optimization of deep networks: implicit acceleration by overparameterization[C]// Proceedings of the 35th International Conference on Machine Learning. New York: JMLR.org, 2018: 244-253. | 
																													
																						| 12 | COSNARD M, MULLER J M, ROBERT Y. Parallel QR decomposition of a rectangular matrix [J]. Numerische Mathematik, 1986, 48(2): 239-249.  10.1007/bf01389871 | 
																													
																						| 13 | KLEMA V, LAUB A. The singular value decomposition: its computation and some applications [J]. IEEE Transactions on Automatic Control, 1980, 25(2): 164-176.  10.1109/tac.1980.1102314 | 
																													
																						| 14 | SRIVASTAVA R K, GREFF K, SCHMIDHUBER J. Highway networks [EB/OL]. (2015-11-03) [2021-10-15]. . | 
																													
																						| 15 | SZEGEDY C, LIU W, JIA Y Q, et al. Going deeper with convolutions [C]// Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2015: 1-9.  10.1109/cvpr.2015.7298594 | 
																													
																						| 16 | ZHANG X Y, ZHOU X Y, LIN M X, et al. ShuffleNet: an extremely efficient convolutional neural network for mobile devices [C]// Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 6848-6856.  10.1109/cvpr.2018.00716 | 
																													
																						| 17 | JEON Y, KIM J. Active convolution: learning the shape of convolution for image classification [C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 4201-4209.  10.1109/cvpr.2017.200 | 
																													
																						| 18 | LI X, WANG W H, HU X L, et al. Selective kernel networks [C]// Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019: 510-519.  10.1109/cvpr.2019.00060 | 
																													
																						| 19 | TARMOUN S, FRANCA G, HAEFFELE B D, et al. Implicit acceleration of gradient flow in overparameterized linear models [EB/OL]. (2021-03-06) [2021-08-08]. . | 
																													
																						| 20 | CAO J M, LI Y Y, SUN M C, et al. DO-Conv: depthwise over-parameterized convolutional layer[J]. IEEE Transactions on Image Processing, 2022, 31: 3726-3736.  10.1109/tip.2022.3175432 | 
																													
																						| 21 | BOSMA W, CANNON J, PLAYOUST C. The Magma algebra system I: the user language [J]. Journal of Symbolic Computation, 1997, 24(3/4): 235-265.  10.1006/jsco.1996.0125 | 
																													
																						| 22 | HE K M, ZHANG X Y, REN S Q, et al. Delving deep into rectifiers: surpassing human-level performance on ImageNet classification [C]// Proceedings of the 2015 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2015: 1026-1034.  10.1109/iccv.2015.123 | 
																													
																						| 23 | SAXE A M, MCCLELLAND J L, GANGULI S. Exact solutions to the nonlinear dynamics of learning in deep linear neural networks [EB/OL]. (2014-02-19) [2021-09-11]. .  10.1073/pnas.1820226116 |