[1] 李仲森.极化雷达成像基础与应用[M].北京:电子工业出版社,2013:2.(LI Z S. Polarization Radar Imaging Foundation and Application[M]. Beijing:Publishing House of Electronics Industry, 2013:2.) [2] 王超,张红,陈曦.全极化合成孔径雷达图像处理[M].北京:科学出版社,2008:107.(WANG C, ZHANG H, CHEN X. Full Polarimetric Synthetic Aperture Radar Image Processing[M]. Beijing:Science Press, 2008:107.) [3] 吴永辉,计科峰,郁文贤.SVM全极化SAR图像分类中的特征选择[J].信号处理,2007,23(6):877-881.(WU Y H, JI K F, YU W X. Feature selection in SVM full polarimetric SAR image classification[J]. Signal Processing, 2007, 23(6):877-881.) [4] 吴永辉,计科峰,李禹,等.利用SVM的极化SAR图像特征选择与分类[J].电子与信息学报,2008,30(10):2347-2351.(WU Y H, JI K F, LI Y, et al. Characteristic selection and classification of polarimetric SAR images using SVM[J]. Journal of Electronics & Information Technology, 2008, 30(10):2347-2351.) [5] 巫兆聪,欧阳群东,李芳芳.顾及特征优化的全极化SAR图像SVM分类[J].测绘科学,2013,38(3):115-117.(WU Z C, OUYANG Q D, LI F F. SVM classification of fully polarimetric SAR images with feature optimization[J]. Surveying Science, 2013, 38(3):115-117.) [6] 代琨,于宏毅,马学刚,等.基于支持向量机的特征选择算法综述[J].信息工程大学学报,2014,15(1):85-91.(DAI K, YU H Y, MA X G, et al. Research on feature selection algorithm based on support vector machine[J]. Journal of Information Engineering University, 2014, 15(1):85-91.) [7] 袁春琦,徐佳,程圆娥,等.顾及分类器参数的全极化SAR图像特征选择与分类[J].测绘科学技术学报,2016,33(5):507-512.(YU C Q, XU J, CHENG Y E, et al. Design and classification of full polarized SAR image based on classifier parameters[J]. Journal of Surveying and Mapping Science and Technology, 2016, 33(5):507-512.) [8] 李雪薇,郭艺友,方涛.基于对象的合成孔径雷达影像极化分解方法[J].计算机应用,2014,34(5):1473-1476.(LI X W, GUO Y Y, FANG T. Based on the object-based synthetic aperture radar image polarization decomposition method[J]. Journal of Computer Applications, 2014, 34(5):1473-1476.) [9] 宋超,徐新,桂容,等.基于多层支持向量机的极化合成孔径雷达特征分析与分类[J].计算机应用,2017,37(1):244-250.(SONG C, XU X, GUI R, et al. Analysis and classification of polarized synthetic aperture radar based on multi-layer support vector machine[J]. Journal of Computer Applications, 2017, 37(1):244-250.) [10] CUMNLING I G, ZYL J J V. Feature utility in polarimetric radar image classification[C]//IGARSS'89:Proceedings of the 1989 International Canadian Symposium on Remote Sensing. Piscataway, NJ:IEEE, 2002:1841-1846. [11] MISHRA P, SINGH D. A statistical-measure-based adaptive land cover classification algorithm by efficient utilization of polarimetric SAR observables[J]. IEEE Transactions on Geoscience & Remote Sensing, 2014, 52(5):2889-2900. [12] WU F, WANG C, ZHANG H, et al. Rice crop monitoring in south China with RADARSAT-2 quad-polarization SAR data[J]. IEEE Geoscience & Remote Sensing Letters, 2011, 8(2):196-200. [13] GUPTA S, SINGH D, KUMAR S. An approach based on texture measures to classify the fully polarimetric SAR image[C]//Proceedings of the 2015 International Conference on Industrial and Information Systems. Piscataway, NJ:IEEE, 2015:1-6. [14] JAIN A, SINGH D. Decision tree approach to classify the fully polarimetric RADARSAT-2 data[C]//Proceedings of 2015 National Conference on Recent Advances in Electronics & Computer Engineering (RAECE). Piscataway, NJ:IEEE, 2015:318-323. [15] VAPNIK V N. An overview of statistical learning theory[J]. IEEE Transactions on Neural Networks, 1999, 10(5):988-99. [16] PUDIL P, NOVOVICOVÁ J, KITTLER J. Floating search methods in feature selection[J]. Pattern Recognition Letters, 1994, 15(11):1119-1125. [17] LANG F, YANG J, LI D, et al. Polarimetric SAR image segmentation using statistical region merging[J]. IEEE Geoscience & Remote Sensing Letters, 2014, 11(2):509-513. |