[1] MANDOW L, PÉREZ de la CRUZ J. Path recovery in frontier search for multi-objective shortest path problems[J]. Journal of Intelligent Manufacturing, 2008, 21(1):89-99. [2] PAIXÃO J, SANTOS J. Labelling methods for the general case of the multi-objective shortest path problem-a computational study[M]//Computational Intelligence and Decision Making:Trends and Applications. Berlin:Springer, 2013, 61:489-502. [3] CLÍMACO J C N, PASCOAL M M B. Multicriteria path and tree problems:discussion on exact algorithms and applications[J]. International Transactions in Operational Research, 2012, 19(1/2):63-98. [4] MOTE J, MURTHY I, OLSON D L. A parametric approach to solving bicriterion shortest path problems[J]. European Journal of Operational Research, 1991, 53(1):81-92. [5] HART P, NILSSON N, RAPHAEL B. A formal basis for the heuristic determination of minimum cost paths[J]. IEEE Transactions on Systems Science and Cybernetics, 1968, 4(2):100-107. [6] HANSEN P. Bicriterion path problems[C]//Proceedings of the Third Conference on Multiple Criteria Decision Making Theory and Application. Berlin:Springer, 1980:109-127. [7] STEWART B S, WHITE C C. Multi-objective A*[J]. Journal of the ACM, 1991, 38(4):775-814. [8] MANDOW L, PÉREZ de la CRUZ J L. Multi-objective A* search with consistent heuristics[J]. Journal of the ACM, 2010, 57(5):Article No. 27. [9] PULIDO F J, MANDOW L, PÉREZ de la CRUZ J L. Dimensionality reduction in multi-objective shortest path search[J]. Computers & Operations Research, 2015, 64:60-70. [10] HAMPSON S, KIBLER D. Plateaus and plateau search in boolean satisfiability problems:when to give up searching and start again[C]//Proceedings of the 2nd DIMACS (Center for Discrete Mathematics and Theoretical Computer Science) Implementation Challenge, Cliques, Coloring and Satisfiability. Providence, RI:American Mathematical Society, 1993:437-456. [11] FRANK J D, CHEESEMAN P, STUTZ J. When gravity fails:local search topology[J]. Journal of Artificial Intelligence Research, 1997, 7(1):249-281. [12] HOFFMANN J. Local search topology in planning benchmarks:an empirical analysis[C]//IJCAI'01:Proceedings of the 17th International Joint Conference on Artificial Intelligence. San Francisco, CA:Morgan Kaufmann, 2001:453-458. [13] HOFFMANN J. Local search topology in planning benchmarks:a theoretical analysis[C]//Proceedings of the 2002 International Conference on AI Planning and Scheduling. Menlo Park, CA:AAAI Press, 2002:92-100. [14] BENTON J, TALAMADUPULA K, EYERICH P, et al. G-value plateaus:challenge for planning[C]//Proceedings of the Twentieth International Conference on Automated Planning and Scheduling. Menlo Park, CA:AAAI Press, 2010:259-262. [15] GOVER F, LAGUNA M. Tabu Search*[M]. Norwell, MA:Kluwer Academic Publishers, 2013:3261-3362. [16] KAUTZ H, SELMAN B. Pushing the envelope:planning, propositional logic, and stochastic search[C]//AAAI'96:Proceedings of the Thirteenth National Conference on Artificial Intelligence. Menlo Park, CA:AAAI Press, 1996:1194-1201. [17] NAKHOST H, MVLLER M. Monte-Carlo exploration for deterministic planning[C]//Proceedings of the Twenty-First International Joint Conference on Artificial Intelligence. Menlo Park, CA:AAAI Press, 2009:1766-1771. [18] NAKHOST H, HOFFMANN J, MVLLER M. Resource-constrained planning:a Monte Carlo random walk approach[C]//Proceedings of the Twenty-Second International Conference on Automated Planning and Scheduling. Menlo Park, CA:AAAI Press, 2012:181-189. [19] 吕强.面向高性能和强表达力的自动规划[D].合肥:中国科学技术大学,2012:29-45.(LYU Q. Towards enhanced efficiency and expressiveness of automated planning[D]. Hefei:University of Science and Technology of China, 2012:29-45.) [20] MACHUCA E, MANDOW L, PÉREZ de la CRUZ J L, et al. A comparison of heuristic best-first algorithms for bicriterion shortest path problems[J]. European Journal of Operational Research, 2012, 217(1):44-53. |