[1] ARZT S, RASTHOFER S, FRITZ C, et al. FlowDroid:precise context, flow, field, object-sensitive and lifecycle-aware taint analysis for Android apps[J]. ACM SIGPLAN Notices, 2014, 49(6):259-269. [2] GORDON M I, KIM D, PERKINS J, et al. Information-flow analysis of Android applications in DroidSafe[C]//Proceedings of the 22nd Network and Distributed System Security Symposium. San Diego, CA:ISOC, 2015:1-16. [3] ENCK W, GILBERT P, HAN S, et al. TaintDroid:an information-flow tracking system for realtime privacy monitoring on smartphones[J]. ACM Transactions on Computer Systems, 2014, 32(2):5-19. [4] SCHWARTZ E J, AVGERINOS T, BRUMLEY D. All you ever wanted to know about dynamic taint analysis and forward symbolic execution (but might have been afraid to ask)[C]//Proceedings of the 2010 IEEE symposium on Security and Privacy. Piscataway, NJ:IEEE, 2010:317-331. [5] YOU W, LIANG B, LI J, et al. Android implicit information flow demystified[C]//Proceedings of the 10th ACM Symposium on Information, Computer and Communications Security. Now York:ACM, 2015:585-590. [6] 过辰楷,许静,司冠南,等.面向移动应用软件信息泄露的模型检测研究[J].计算机学报,2016,39(11):2324-2343.(GUO C K, XU J, SI G N, et al. Model checking for software information leakage in mobile application[J]. Chinese Journal of Computers, 2016, 39(11):2324-2343.) [7] CLAUSE J, LI W, ORSO A. Dytan:a generic dynamic taint analysis framework[C]//Proceedings of the 2007 International Symposium on Software Testing and Analysis. New York:ACM, 2007:196-206. [8] 杜小勇,李曼,王珊.本体学习研究综述[J].软件学报,2006,17(9):1837-1847.(DU X Y, LI M, WANG S. A survey on ontology learning research[J]. Journal of Software, 2006, 17(9):1837-1847.) [9] 葛强,沈国华,黄志球,等.Web服务中支持本体推理的隐私保护研究[J].计算机科学与探索,2013,7(6):536-544.(GE Q, SHEN G H, HUANG Z Q, et al. Research on privacy protection based on ontology in Web service[J]. Journal of Frontiers of Computer Science and Technology, 2013, 7(6):536-544.) [10] HORROCKS I, PATEL-SCHNEIDER P F, BOLEY H, et al. SWRL:a semantic Web rule language combining OWL and RuleML[R].[S.l.]:W3C Member Submission, 2004. [11] BAO T, ZHENG Y, LIN Z, et al. Strict control dependence and its effect on dynamic information flow analyses[C]//Proceedings of the 19th International Symposium on Software Testing and Analysis. New York:ACM, 2010:13-24. [12] KWON Y, KIM D, SUMNER W N, et al. LDX:Causality inference by lightweight dual execution[C]//Proceedings of the 2016 International Conference on Architectural Support for Programming Languages and Operating Systems. New York:ACM, 2016:503-515. [13] 周亮,黄志球,倪川.基于SWRL规则的本体推理研究[J].计算机技术与发展,2015,25(10):67-70.(ZHOU L, HUANG Z Q, NI C. Research on ontology reasoning based on SWRL rules[J]. Computer Technology and Development, 2015, 25(10):67-70.) [14] YADAV U, NARULA G S, DUHAN N, et al. Development and visualization of domain specific ontology using Protégé[J]. Indian Journal of Science and Technology, 2016, 9(16):1-7. [15] MUSEN M A. The Protégé project:a look back and a look forward[J]. AI Matters, 2015, 1(4):4-12. [16] BAK J, JEDRZEJEK C, FALKOWSKI M. Usage of the Jess engine, rules and ontology to query a relational database[C]//Proceedings of the 2009 International Workshop on Rules and Rule Markup Languages for the Semantic Web. Berlin:Springer, 2009:216-230. [17] ZHOU Y, JIANG X. Dissecting android malware:characterization and evolution[C]//Proceedings of the 2012 IEEE Symposium on Security and Privacy. Piscataway, NJ:IEEE, 2012:95-109. [18] RASTHOFER S, ARZT S, BODDEN E. A machine-learning approach for classifying and categorizing Android sources and sinks[C]//Proceedings of the 21nd Network and Distributed System Security Symposium. San Diego, CA:ISOC, 2014:1-15. |