[1] 漆桂林, 高桓, 吴天星. 知识图谱研究进展[J]. 情报工程,2017, 3(1):4-25.(QI G L,GAO H,WU T X. The research advances of knowledge graph[J]. Technology Intelligence Engineering,2017,3(1):4-25.) [2] 李涓子, 侯磊. 知识图谱研究综述[J]. 山西大学学报(自然科学版),2017,40(3):454-459.(LI J Z,HOU L. Reviews on knowledge graph research[J]. Journal of Shanxi University (Natural Science Edition),2017,40(3):454-459.) [3] NIU X,SUN X,WANG H,et al. Zhishi. me-weaving Chinese linking open data[C]//Proceedings of the 2011 International Semantic Web Conference,LNCS 7032. Berlin:Springer,2011:205-220. [4] BIZER C, LEHMANN J, KOBILAROV G. DBpedia-a crystallization point for the Web of data[J]. Journal of Web Semantics,2009,7(3):154-165. [5] AUER S,BIZER C,KOBILAROV G,et al. DBpedia:a nucleus for a Web of open data[C]//Proceedings of the 6th International Semantic Web Conference/Proceedings of the 2nd Asian Semantic Web Conference,LNCS 4825. Berlin:Springer,2007:722-735. [6] SUCHANEK F M,KASNECI G,WEIKUM G. YAGO:a core of semantic knowledge[C]//Proceedings of the 16th International Conference on World Wide Web. New York:ACM, 2007:697-706. [7] SUCHANEK F M,KASNECI G,WEIKUM G. YAGO:a large ontology from Wikipedia and WordNet[J]. Journal of Web Semantics,2008,6(3):203-217. [8] VRANDEČIĆ D,KRÖTZSCH M. Wikidata:a free collaborative knowledgebase[J]. Communications of the ACM,2014,57(10):78-85. [9] ZOU L,ÖZSU M T,CHEN L,et al. gStore:a graph-based SPARQL query engine[J]. The VLDB Journal,2014,23(4):565-590. [10] PERÇUKU A,MINKOVSKA D,STOYANOVA L. Modeling and processing big data of power transmission grid substation using Neo4[j J]. Procedia Computer Science,2017,113:9-16. [11] WILINSON K. Jena property table implementation[C]//Proceedings of the 2nd International Workshop on Scalable Semantic Web Knowledge Base Systems. California:HP,2006:35-46. [12] LI F,YU H. An investigation of single-domain and multidomain medication and adverse drug event relation extraction from electronic health record notes using advanced deep learning models[J]. Journal of the American Medical Informatics Association, 2019,26(7):646-654. [13] 鄂海红, 张文静, 肖思琪, 等. 深度学习实体关系抽取研究综述[J]. 软件学报,2019,30(6):1793-1818.(E H H,ZHANG W J,XIAO S Q,et al. Survey of entity relationship extraction based on deep learning[J]. Journal of Software,2019,30(6):1793-1818.) [14] CHRISTOPOULOU F,TRAN T T,SAHU S K,et al. Adverse drug events and medication relation extraction in electronic health records with ensemble deep learning methods[J]. Journal of the American Medical Informatics Association,2020,27(1):39-46. [15] 王丹, 王刚, 李强, 等. 基于HACCP体系的食品安全电子管理系统[J]. 食品安全质量检测学报,2018,9(24):6362-6366. (WANG D, WANG G, LI Q, et al. Food safety electronic management system based on HACCP[J]. Journal of Food Safety and Quality,2018,9(24):6362-6366.) [16] 李宏伟, 黄卫东, 洪小娟. 食品安全预警本体构建研究[J]. 计算机技术与发展,2013,23(9):238-240,244.(LI H W,HUANG W D,HONG X J. Research on ontology building in food security pre-warning[J]. Computer Technology and Development,2013, 23(9):238-240,244.) [17] QIN L,HAO Z,YANG L. Question answering system based on food spot-check knowledge graph[C]//Proceedings of the 6th International Conference on Computing and Data Engineering. New York:ACM,2020:168-172. [18] 罗钰敏, 刘丹, 尹凯, 等. 加权平均Word2Vec实体对齐方法[J]. 计算机工程与设计,2019,40(7):1927-1933.(LUO Y M,LIU D,YIN K,et al. Weighted average Word2Vec entity alignment method[J]. Computer Engineering and Design,2019,40(7):1927-1933.) [19] GUAN S,JIN X,WANG Y,et al. Self-learning and embedding based entity alignment[J]. Knowledge and Information Systems, 2019,59(2):361-386. [20] ZHANG X,MENG C,ZOU L. Expressivity issues in SPARQL:monotonicity and two-versus three-valued semantics[J]. SCIENCE CHINA-Information Sciences,2018,61(12):No. 129102. [21] QIN Y R,SHENG Q Z,QIN Y,et al. Learning-based SPARQL query performance modeling and prediction[J]. World Wide Web,2018,21(4):1015-1035. [22] SONG M,OH H,SEO S,et al. Map-side join processing of SPARQL queries based on abstract RDF data filtering[J]. Journal of Database Management,2019,30(1):22-40. [23] VINCENT V D,GUILLAUME J L,LAMBIOTTE R,et al. Fast unfolding of communities in large networks[J]. Journal of Statistical Mechanics:Theory and Experiment,2008,2008(10):No. P10008. |