[1] LI Z, HE H, WANG R, et al. Single image super-resolution via directional group sparsity and directional features[J]. IEEE Transactions on Image Processing, 2015, 24(9):2874-2888. [2] DONG C, LOY C C, HE K, et al. Image super-resolution using deep convolutional networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2016, 38(2):295-307. [3] YANG J, WRIGHT J, HUANG T S, et al. Image super-resolution via spare representation[J]. IEEE Transactions on Image Processing, 2010, 19(11):2861-2873. [4] TIMOFTE R, de SMET V, van GOOL L. Anchored neighborhood regression for fast example-based super-resolution[C]//ICCV'13:Proceedings of the 2013 IEEE International Conference on Computer Vision. Washington, DC:IEEE Computer Society, 2013:1920-1927. [5] TIMOFTE R, de SMET V, GOOL L. A+:adjusted anchored neighborhood regression for fast super resolution[C]//ACCV 2014:Proceedings of the 2014 Asian Conference on Computer Vision, LNCS 9006. Berlin:Springer-Verlag, 2014:111-126. [6] YANG C Y, YANG M H. Fast direct super-resolution by simple functions[C]//ICCV'13:Proceedings of the 2013 IEEE International Conference on Computer Vision. Washington, DC:IEEE Computer Society, 2013:561-568. [7] DAI D, TIMOFTE R, van GOOL L. Jointly optimized regressors for image super-resolution[J]. Computer Graphics Forum, 2015, 34(2):95-104. [8] FREEDMAN G, FATTAL R. Image and video upscaling from local self-examples[J]. ACM Translations on Graphics, 2011, 30(2):Article No. 12. [9] PROTTER M, ELAD M, TAKEDA H, et al. Generalizing the nonlocal-means to super-resolution reconstruction[J]. IEEE Transactions on Image Processing, 2009, 18(1):36-51. [10] MAIRAL J, BACH F, PONCE J, et al. Non-local sparse models for image restoration[C]//ICCV'09:Proceedings of the 2009 IEEE 12th International Conference on Computer Vision. Washington, DC:IEEE Computer Society, 2009:2272-2279. [11] DONG C, LOY C C, HE K, et al. Learning a deep convolutional network for image super resolution[C]//ECCV 2014:Proceedings of the 2014 European Conference on Computer Vision, LNCS 8692. Berlin:Springer-Verlag, 2014:184-199. [12] GKASNER D, BAGON S, IRANI M. Super-resolution from a single image[C]//ICCV'09:Proceedings of the 2009 IEEE 12th International Conference on Computer Vision. Washington, DC:IEEE Computer Society, 2009:349-356. [13] CANDOCIA F M, PRINCIPE J C. Super-resolution of images based on local correlations[J]. IEEE Transactions on Neural Networks, 1999, 10(2):372-380. [14] DONG W, ZHANG L, SHI G, et al. Nonlocally centralized sparse representation for image restoration[J]. IEEE Transactions on Image Processing, 2013, 22(4):1620-1630. [15] YOU X, XUE W, LEI J, et al.Single image super-resolution with non-local balanced low-rank matrix restoration[C]//ICPR 2016:Proceedings of the 201623rd International Conference on Pattern Recognition. Washington, DC:IEEE Computer Society, 2016:1255-1260. [16] XU J, ZHANG L, ZUO W, et al. Patch group based nonlocal self-similarity prior learning for image denoising[C]//ICCV'15:Proceedings of the 2015 IEEE International Conference on Computer Vision. Washington, DC:IEEE Computer Society, 2015:244-252. [17] TEKALP A M, OZKAN M K, SEZAN M I. High-resolution image reconstruction from lower-resolution image sequences and space-varying image restoration[C]//ICASSP'92:Proceedings of the 1992 IEEE International Conference on Acoustics, Speech and Signal Processing. Washington, DC:IEEE Computer Society, 1992:169-172. [18] LU Y, IMANURA M. Pyramid-based super-resolution of the undersampled and subpixel shifted image sequence[J]. International Journal on Systems Technology, 2002, 12(6):254-263. [19] AHARON M, ELAD M, BRUCKSTEIN A. K-SVD:an algorithm for designing overcomplete dictionaries for sparse representation[J]. IEEE Transactions on Signal Processing, 2006, 54(11):4311-4322. |