[1] CHANDOLA V, BANERJEE A, KUMAR V. Anomaly detection:a survey[J]. ACM Computing Surveys, 2009, 41(3):1-58. [2] YAACOB A H, TAN I K T, SU F C, et al. ARIMA based network anomaly detection[C]//Proceedings of the 2nd International Conference on Communication Software and Networks. Piscataway, NJ:IEEE, 2010:205-209. [3] LIN J, KEOGH E, FU A, et al. Approximations to magic:finding unusual medical time series[C]//Proceedings of the 2005 IEEE Symposium on Computer-Based Medical Systems. Piscataway, NJ:IEEE, 2005:329-334. [4] 余宇峰, 朱跃龙, 万定生,等. 基于滑动窗口预测的水文时间序列异常检测[J]. 计算机应用, 2014, 34(8):2217-2220. (YU Y F, ZHU Y L, WAN D S, et al. Time series outlier detection based on sliding window prediction[J]. Journal of Computer Applications, 2014, 34(8):2217-2220.) [5] 张宝燕, 李茹, 穆文瑜. 基于混沌时间序列的瓦斯浓度预测研究[J]. 计算机工程与应用, 2011, 47(10):244-248.(ZHANG B Y, LI R, MU W Y. Study on gas concentration prediction based on chaotic time series[J]. Computer Engineering and Applications, 2011, 47(10):244-248.) [6] SEVAKULA R K, VERMA N K. Clustering based outlier detection in fuzzy SVM[C]//Proceedings of the 2014 IEEE International Conference on Fuzzy Systems. Piscataway, NJ:IEEE, 2014:1172-1177. [7] MARTINS H, PALMA L, CARDOSO A, et al. A support vector machine based technique for online detection of outliers in transient time series[C]//Proceedings of the 201510th Asian Control Conference. Piscataway, NJ:IEEE, 2015:1-6. [8] DANG T T, NGAN H Y T, LIU W. Distance-based k-nearest neighbors outlier detection method in large-scale traffic data[C]//Proceedings of the 2015 IEEE International Conference on Digital Signal Processing. Piscataway, NJ:IEEE, 2015:507-510. [9] ABID A, KACHOURI A, MAHFOUDHI A. Outlier detection for wireless sensor networks using density-based clustering approach[J]. IET Wireless Sensor Systems, 2017, 7(4):83-90. [10] JIANG J, YASAKETHU L. Anomaly detection via one class SVM for protection of SCADA systems[C]//Proceedings of the 2013 International Conference on Cyber-Enabled Distributed Computing and Knowledge Discovery. Washington, DC:IEEE Computer Society, 2013:82-88. [11] NGAN H Y T, YUNG N H C, YEH A G O. A comparative study of outlier detection for large-scale traffic data by one-class SVM and kernel density estimation[J]. Proceedings of SPIE-the International Society for Optical Engineering, 2015, 9405:94050I-1-94050I-10. [12] PENA E H M, BARBON S, RODRIGUES J J P C, et al. Anomaly detection using digital signature of network segment with adaptive ARIMA model and paraconsistent logic[C]//Proceedings of the 2014 IEEE Symposium on Computers and Communication. Piscataway, NJ:IEEE, 2014:1-6. [13] FERNANDES G, PENA E H M, CARVALHO L F, et al. Statistical, forecasting and metaheuristic techniques for network anomaly detection[C]//Proceedings of the 30th Annual ACM Symposium on Applied Computing. New York:ACM, 2015:701-707. [14] BISHOP C M. Pattern Recognition and Machine Learning (Information Science and Statistics)[M]. New York:Springer, 2006:303-319. [15] MURPHY K P. Machine Learning:a Probabilistic Perspective[M]. Cambridge, MA:MIT Press, 2012:79-91, 515-542. [16] WILLIAMS C K I, RASMUSSEN C E. Gaussian Processes for Machine Learning[M]. Cambridge, MA:MIT Press, 2006:7-30, 79-102. [17] GOLDBERG P W, WILLIAMS C K I, BISHOP C M. Regression with input-dependent noise:a Gaussian process treatment[C]//NIPS 1998:Proceedings of the 1998 Conference on Advances in Neural Information Processing Systems. Cambridge, MA:MIT Press, 1998:493-499. [18] LÁZARO-GREDILLA M, TITSIAS M K. Variational heteroscedastic Gaussian process regression[C]//ICML 2011:Proceedings of the 2011 International Conference on Machine Learning. New York, NY:ACM, 2011:841-848. [19] NOCEDAL J, WRIGHT S. Numerical Optimization[M]. New York:Springer, 2006:101-134. [20] Yahoo! Inc. Webscope dataset ydata labeled time series anomalies v1.0[EB/OL].[2015-03-24]. https://webscope.sandbox.yahoo.com/catalog.php?datatype=s&did=70. |