1 |
ZHOU H, ZHANG S, PENG J, et al. Informer: beyond efficient Transformer for long sequence time-series forecasting[C]// Proceedings of the 35th AAAI Conference on Artificial Intelligence. Palo Alto, CA: AAAI Press, 2021: 11106-11115.
|
2 |
郭建平.农业气象灾害监测预测技术研究进展[J].应用气象学报,2016,27(5):620-630.
|
|
GUO J P. Research progress on agricultural meteorological disaster monitoring and forecasting[J]. Journal of Applied Meteorological Science, 2016, 27(5): 620-630.
|
3 |
YIN Y, SHANG P. Forecasting traffic time series with multivariate predicting method[J]. Applied Mathematics and Computation, 2016, 291: 266-278.
|
4 |
WU H, HU T, LIU Y, et al. TimesNet: temporal 2D-variation modeling for general time series analysis[EB/OL]. (2023-04-12) [2023-10-19]..
|
5 |
ZENG A, CHEN M, ZHANG L, et al. Are Transformers effective for time series forecasting?[C]// Proceedings of the 37th AAAI Conference on Artificial Intelligence. Palo Alto, CA : AAAI Press, 2023:11121-11128.
|
6 |
ZHOU T, MA Z, WEN Q, et al. FEDformer: frequency enhanced decomposed Transformer for long-term series forecasting[C]// Proceedings of the 39th International Conference on Machine Learning. New York: JMLR.org, 2022: 27268-27286.
|
7 |
JONES D L, PARKS T W. Time-frequency window leakage in the short-time Fourier transform[J]. Circuits, Systems and Signal Processing, 1987, 6(3): 263-286.
|
8 |
GOTTLIEB D, SHU C W. On the Gibbs phenomenon and its resolution[J]. SIAM Review, 1997, 39(4): 644-668.
|
9 |
WANG H, PENG J, HUANG F, et al. MICN: multi-scale local and global context modeling for long-term series forecasting[EB/OL]. [2023-12-22]..
|
10 |
GU G F, ZHOU W X. Detrending moving average algorithm for multifractals[J]. Physical Review. E, Statistical, Nonlinear, and Soft Matter Physics, 2010, 82(1): No.011136.
|
11 |
HUNTER J S. The exponentially weighted moving average[J]. Journal of Quality Technology, 1986, 18(4): 203-210.
|
12 |
SHUMWAY R H, STOFFER D S. ARIMA models[M]// Time series Analysis and Its Applications: With R Examples. Cham: Springer, 2017: 75-163.
|
13 |
WEST M. Time series decomposition[J]. Biometrika, 1997, 84(2): 489-494.
|
14 |
QIAN S, CHEN D. Discrete Gabor transform[J]. IEEE Transactions on Signal Processing, 1993, 41(7): 2429-2438.
|
15 |
BRACEWELL R, KAHN P B. The Fourier transform and its applications[J]. American Journal of Physics, 1966, 34(8): 712-712.
|
16 |
SELESNICK I W, BURRUS C S. Generalized digital Butterworth filter design[J]. IEEE Transactions on Signal Processing, 1998, 46(6): 1688-1694.
|
17 |
YOUNG I T, VAN VLIET L J. Recursive implementation of the Gaussian filter[J]. Signal Processing, 1995, 44(2): 139-151.
|
18 |
WU H, XU J, WANG J, et al. Autoformer: decomposition Transformers with auto-correlation for long-term series forecasting[C]// Proceedings of the 35th International Conference on Neural Information Processing Systems. Red Hook, NY: Curran Associates Inc., 2021: 22419-22430.
|
19 |
TRINDADE A. ElectricityLoadDiagrams20112014 in UCI Machine Learning Repository[DS/OL]. [2023-10-19]..
|
20 |
LAI G, CHANG W C, YANG Y, et al. Modeling long- and short-term temporal patterns with deep neural networks[C]// Proceedings of the 41st International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2018: 95-104.
|
21 |
CHOLLET F. Deep learning with Python[M]. 2nd ed. Shelter Island, NY: Manning Publications, 2021: 45-52
|
22 |
KITAEV N, KAISER Ł, LEVSKAYA A. Reformer: the efficient Transformer[EB/OL]. [2023-11-08]..
|
23 |
NIE X, ZHOU X, LI Z, et al. LogTrans: providing efficient local-global fusion with Transformer and CNN parallel network for biomedical image segmentation[C]// Proceedings of the 24th IEEE International Conference on High Performance Computing and Communications/ 8th IEEE International Conference on Data Science and Systems/ 20th IEEE International Conference on Smart City/ 8th IEEE International Conference on Dependability in Sensor, Cloud and Big Data Systems and Application. Piscataway: IEEE, 2022: 769-776.
|
24 |
HEWAGE P, BEHERA A, TROVATI M, et al. Temporal Convolutional Neural (TCN) network for an effective weather forecasting using time-series data from the local weather station[J]. Soft Computing, 2020, 24(21): 16453-16482.
|