计算机应用 ›› 2018, Vol. 38 ›› Issue (11): 3180-3187.DOI: 10.11772/j.issn.1001-9081.2018041222

• 第七届中国数据挖掘会议(CCDM 2018) • 上一篇    下一篇

基于NARX神经网络的热负荷预测中关键影响因素分析

谢吉洋1, 闫冬2, 谢垚1, 马占宇1   

  1. 1. 北京邮电大学 模式识别与智能系统实验室, 北京 100876;
    2. 北京邮电大学 图书馆, 北京 100876
  • 收稿日期:2018-03-29 修回日期:2018-06-06 出版日期:2018-11-10 发布日期:2018-11-10
  • 通讯作者: 马占宇
  • 作者简介:谢吉洋(1995-),男,北京人,硕士研究生,主要研究方向:模式识别、机器学习、贝叶斯学习、智能能源网络中的能源数据分析;闫冬(1980-),女,北京人,硕士,主要研究方向:数据分析、数据挖掘;谢垚(1995-),男,河南三门峡人,硕士研究生,主要研究方向:模式识别、机器学习;马占宇(1982-),男,河北邯郸人,副教授,博士,CCF会员,主要研究方向:模式识别与机器学习基础理论、多媒体信号处理、数据挖掘、生物医学信号处理、生物信息学。
  • 基金资助:
    国家自然科学基金资助项目(61773071);北京市科技新星项目(Z171100001117049);北京市自然科学基金资助项目(4162044);北京市科技新星计划交叉学科合作课题(Z181100006218137)。

Analysis of key factors in heat demand prediction based on NARX neural network

XIE Jiyang1, YAN Dong2, XIE Yao1, MA Zhanyu1   

  1. 1. Pattern Recognition and Intelligent Systems Laboratory, Beijing University of Posts and Telecommunications, Beijing 100876, China;
    2. Library, Beijing University of Posts and Telecommunications, Beijing 100876, China
  • Received:2018-03-29 Revised:2018-06-06 Online:2018-11-10 Published:2018-11-10
  • Supported by:
    This work is partially supported by the National Natural Science Foundation of China (61773071), the Beijing Nova Program (Z171100001117049), the Beijing Natural Science Foundation (4162044), the Beijing Nova Program Interdisciplinary Cooperation Project (Z181100006218137).

摘要: 在区域供热(DH)网络中,精确预测热负荷已被认为是提高效率和节省成本的重要环节。为了提高预测精度,研究不同影响因素对热负荷预测的影响极为重要。使用引入不同影响因素的数据集训练得到带外部输入的非线性自回归(NARX)神经网络模型,并比较其预测性能,以讨论直接太阳辐射和风速对热负荷预测的影响程度。实验结果表明,直接太阳辐射和风速都是热负荷预测中的关键影响因素。只引入风速时,预测模型的平均绝对百分比误差(MAPE)和均方根误差(RMSE)均低于只引入直接太阳辐射,同时引入风速和直接太阳辐射能够得到最佳的模型预测性能,但是对于MAPE和RMSE降低的贡献不大。

关键词: 区域供热, 热负荷预测, 非线性自回归神经网络, 直接太阳辐射, 风速

Abstract: In District Heating (DH) network, accurate heat demand prediction has been considered as an important part for efficiency improvement and cost saving. In order to improve the prediction accuracy, it is extremely important to study the influence of different factors on heat load forecasting. In this paper, the Nonlinear AutoRegressive with eXogenous input (NARX) neural network models were trained using the datasets with different key factors and used to compare their prediction performance in order to investigate the impact of direct solar radiance and wind speed on heat demand prediction. The experimental results show that direct solar radiance and wind speed are key factors of heat demand prediction. Including wind speed only, the Mean Absolute Percentage Error (MAPE) and Root Mean Squared Error (RMSE) of the proposed prediction model are lower than those of direct solar radiation only. Including both wind speed and direct solar radiance shows the best model performance, but it cannot result in a large decrease of MAPE and RMSE.

Key words: District Heating (DH), heat demand prediction, Nonlinear AutoRegressive with eXogenous input (NARX) neural network, direct solar radiance, wind speed

中图分类号: