[1] LUND H, WERNER S, WILTSHIRE R, et al. 4th generation district heating (4GDH) integrating smart thermal grids into future sustainable energy systems[J]. Energy, 2014, 68:1-11. [2] MA Z, LI H, SUN Q, et al. Statistical analysis of energy consumption patterns on the heat demand of buildings in district heating systems[J]. Energy and Buildings, 2014, 85:464-472. [3] SHAMSHIRBAND S, PETKOVIC D, ENAYATIFAR R, et al. Heat load prediction in district heating systems with adaptive neuro-fuzzy method[J]. Renewable & Sustainable Energy Reviews, 2015, 48:760-767. [4] DOTZAUER E. Simple model for prediction of loads in district-heating systems[J]. Applied Energy, 2002, 73:277-284. [5] YANG H, JIN S, FENG S, et al. Heat load forecasting of district heating system based on numerical weather prediction model[C]//IFEEA 2015:2015 International Forum on Electrical Engineering and Automation. Paris:Atlantis Press, 2015:1-5. [6] 王文标, 蔡麒, 汪思源.基于气象因素的集中供热系统热负荷预测研究[J]. 计算机测量与控制, 2016, 24(02):22-26. (WANG W B, CAI Q, WANG S Y. Research of district heating system heat load prediction based on weather factors[J]. Computer Measurement and Control, 2016, 24(02):22-26.) [7] 陈双. 建筑室内温度影响因素分析及热负荷预测研究[D]. 大连:大连海事大学, 2015. (CHEN S. Analysis on the influence factors of indoor temperature and study on thermal load forecasting[D]. Dalian:Dalian Maritime University, 2015.) [8] MELIKYAN Z, EGNATOSYAN S. Encyclopedia of Energy Engineering and Technology[M]. Abingdon:Taylor and Francis, 2007:1272-1277. [9] FOUDA A E, MELIKYAN Z. Assessment of a modified method for determining the cooling load of residential buildings[J]. Energy, 2010, 35(12):4726-4730. [10] TORCHIO M F, GENON G, POGGIO A, et al. Merging of energy and environmental analyses for district heating systems[J]. Energy, 2009, 34(3):220-227. [11] DOTZAUER E. Simple model for prediction of loads in district-heating systems[J]. Applied Energy, 2002, 73(3):277-284. [12] SUN Q, LI H, MA Z, et al. A comprehensive review of smart energy meters in intelligent energy networks[J]. IEEE Internet of Things Journal, 2016, 3(4):464-479. [13] MA Z, XIE J, LI H, et al. The role of data analysis in the development of intelligent energy networks[J]. IEEE Network, 2017, 31(5):88-95. [14] YOSHIDA H, TERAI T. An ARMA type weather model for air-conditioning, heating and cooling load calculation[J]. Energy and Buildings, 1991, 16(1):625-634. [15] GROSSWINDHAGERA S, VOIGTB A, KOZEKA M. Online short-term forecast of system heat load in district heating networks[EB/OL].[2018-03-20].https://pdfs.semanticscholar.org/82ad/6a51ec2848a8121c461ce8f6e6f1aa35ea3e.pdf. [16] ZHOU X, LIU Q D, LIU G Q, et al. Multi-variable time series forecasting for thermal load of air-conditioning system on SVR[C]//CCC 2015:2015 Chinese Control Conference. Piscataway, NJ:IEEE, 2015:8276-8280. [17] 王美萍. 城镇供热系统层级热量结算点中短期热负荷预测方法研究[D]. 太原:太原理工大学, 2017. (WNAG M P. Research on short and medium term heat demand load forecasting for scale heat settlement site in urban heating system[D]. Taiyuan:Taiyuan University of Technology, 2017.) [18] KUMAR R, AGGARWAL R K, SHAMRMA J D. Estimation of total energy load of building using artificial neural network[J]. Energy and Environmental Engineering, 2013, 1(2):25-35. [19] 李琦,韩颖.基于天气预报的集中供热系统短期热负荷预测[J].自动化与仪表, 2015, 30(5):5-8. (LI Q,HAN Y. Short-term heat load forecasting of district heating system based on weather[J]. Automation & Instrumentation, 2015, 30(5):5-8.) [20] 张经博,郭凌,王朝霞,等.基于遗传算法优化BP神经网络的供暖系统热负荷预测模型[J].四川兵工学报,2014,35(4):152-156. (ZHANG J B, GUO L, WANG Z X, et al. Thermal load forecasting model of heating system based on genetic algorithm optimization BP neural network[J]. Journal of Sichuan Ordnance, 2014, 35(4):152-156.) [21] HASHMI M U, ARORA V, PRIOLKAR J G. Hourly electric load forecasting using Nonlinear AutoregRessive with eXogenous (NARX) based neural network for the state of Goa India[C]//ICIC 2015:International Conference on Industrial Instrumentation and Control. Piscataway, NJ:IEEE, 2015:1418-1423. [22] PRAKASH G, SAMBASIVARAO K, KIRSALI P, et al. Short term load forecasting for Uttarakhand using neural network and time series models[C]//ICCC 2014:2014 International Conference on Computer Communications. Piscataway, NJ:IEEE, 2014:1-6. [23] AWAN S M, KHAN Z A, ASLAM M, et al. Application of NARX based FFNN, SVR and ANN fitting models for long term industrial load forecasting and their comparison[C]//ISIE 2012:2012 International Symposium on Industrial Electronics. Piscataway, NJ:IEEE, 2012:803-807. [24] SANSA I, MISSAOUI S, BOUSSADA Z, et al. PV power forecasting using different artificial neural networks strategies[C]//ICGE 2014:2014 International Conference on Green Energy. Piscataway, NJ:IEEE, 2014:54-59. [25] CUI H, PENG X. Short-term city electric load forecasting with considering temperature effects:an improved ARIMAX model[J]. Mathematical Problems in Engineering, 2015, 1:1-10. [26] CHANG C, LIN C. LIBSVM:a library for support vector machines[J]. ACM Transactions on Intelligent Systems and Technology, 2011, 2(3):Article No. 27. [27] BOX G E, TIAO G C. Intervention analysis with applications to economic and environmental problems[J]. Journal of the American Statistical Association, 1975, 70(349):70-79. |