[1] Global Wind Energy Council. Global wind report 2018[EB/OL].[2019-09-11]. https://gwec.net/global-wind-report-2018/. [2] 杨悦, 李国庆. 大规模风电并网对互联电力系统低频振荡影响研究[J]. 太阳能学报,2017,38(10):2665-2674.(YANG R,LI G Q. Influence of large scale grid connected wind power on low frequency oscillation of interconnected power system[J]. Acta Energiae Solaris Sinica,2017,38(10):2665-2674.) [3] CUI B,XUE A,BI T,et al. Analysis on the static voltage stability of an actual power system with large-scale wind farm[C]//Proceedings of the 2nd IET Renewable Power Generation Conference. Stevenage:IET,2013:1-5. [4] AHMED A,KHALID M. An intelligent framework for short-term multi-step wind speed forecasting based on Functional Networks[J]. Applied Energy,2018,225:902-911. [5] XIU C,WANG T,TIAN M,et al. Short-term prediction method of wind speed series based on fractal interpolation[J]. Chaos,Solitons and Fractals,2014,68:89-97. [6] NAIK J,BISOI R,DASH P K. Prediction interval forecasting of wind speed and wind power using modes decomposition based low rank multi-kernel ridge regression[J]. Renewable Energy,2018, 129(Pt A):357-383. [7] 赵永宁, 叶林, 朱倩雯. 风电场弃风异常数据簇的特征及处理方法[J]. 电力系统自动化,2014,38(21):39-46.(ZHAO Y N,YE L,ZHU Q W. Characteristics and processing method of abnormal data clusters caused by wind curtailments in wind farms[J]. Automation of Electric Power Systems,2014,38(21):39-46.) [8] 陈伟, 吴布托, 裴喜平. 风电机组异常数据预处理的分类多模型算法[J]. 电力系统及其自动化学报,2018,30(4):137-143. (CHEN W, WU B T, PEI X P. Classification multi-model algorithm for abnormal data preprocessing in wind turbines[J]. Proceedings of the CSU-EPSA,2018,30(4):137-143.) [9] 武艳强, 黄立人. 时间序列处理的新插值方法[J]. 大地测量与地球动力学,2004,24(4):43-47.(WU Y Q,HUANG L R. A new interpolation method in time series analyzing[J]. Journal of Geodesy and Geodynamics,2004,24(4):43-47.) [10] 杨茂, 翟冠强, 李大勇, 等. 基于风速升降特性及支持向量机理论的异常数据重构算法[J]. 电力系统保护与控制,2018,46(16):31-37.(YANG M,ZHAI G Q,LI D Y,et al. An algorithm of abnormal data reconstruction based on RISE-FALL-feature of the wind speed and support vector machine[J]. Power System Protection and Control,2018,46(16):31-37.) [11] 陈伟, 王敏, 裴喜平. 一种风电场风速异常数据预处理的新方法[J]. 兰州理工大学学报,2019,45(5):91-96.(CHEN W, WANG M,PEI X P. A new method for data preprocessing of wind speed anomalies at wind farm[J]. Journal of Lanzhou University of Technology,2019,45(5):91-96.) [12] 钟莉, 李杰. 风速时程的分形特征分析[J]. 华中科技大学学报(城市科学版),2008,25(4):273-275.(ZHONG L,LI J. Fractal characteristic analysis of wind speed time history[J]. Journal of Huazhong University of Science and Technology(Urban Science Edition),2008,25(4):273-275.) [13] CHANG T P,KO H H,LIU F J,et al. Fractal dimension of wind speed time series[J]. Applied Energy,2012,93:742-749. [14] 张俊伟, 李春, 李倩倩, 等. 基于风速时间序列分形与传统插值对比研究[J]. 热能动力工程,2018,33(7):122-127,48. (ZHANG J W,LI C,LI Q Q,et al. The contrastive study of fractal and traditional interpolation based on wind speed time series[J]. Journal of Engineering for Thermal Energy and Power,2018, 33(7):122-127,48.) [15] 李洋, 李春, 李倩倩, 等. 分段分形插值在风速时间序列中的应用[J]. 热能动力工程,2018,33(12):118-124,153.(LI Y,LI C,LI Q Q,et al. Application of segmental fractal interpolation in wind speed time series[J]. Journal of Engineering for Thermal Energy and Power,2018,33(12):118-124,153.) [16] 孙洪泉. 分形几何与分形插值[M]. 北京:科学出版社, 2011:99-116, 197. (SUN H Q. Fractal Geometry and Fractal Interpolation[M]. Beijing:Science Press,2011:99-116, 197.) [17] 李倩倩, 李春, 杨阳. 自相似性和分形维数在风场分析中的应用[J]. 动力工程学报,2016,36(11):914-919,926.(LI Q Q, LI C,YANG Y. Application of wind speed self-similarity and fractal dimension in wind field analysis[J]. Journal of Chinese Society of Power Engineering,2016,36(11):914-919,926.) [18] 周海鹏, 高芹, 蒋丰千, 等. 自适应混沌量子粒子群算法及其在WSN覆盖优化中的应用[J]. 计算机应用,2018,38(4):1064-1071.(ZHOU H P,GAO Q,JIANG F Q,et al. Application of self-adaptive chaotic quantum particle swarm algorithm in coverage optimization of wireless sensor network[J]. Journal of Computer Applications,2018,38(4):1064-1071.) [19] 郑庆新, 顾晓辉, 张洪铭. 基于SQP和自适应搜索的混沌粒子群算法[J]. 计算机工程与应用,2018,54(13):131-136. (ZHENG Q X,GU X H,ZHANG H M. Chaotic particle swarm optimization algorithm based on SQP and adaptive search[J]. Computer Engineering and Applications, 2018, 54(13):131-136.) [20] 范君, 王新, 徐慧. 粒子群优化混合核极限学习机的构造煤厚度预测方法[J]. 计算机应用,2018,38(6):1820-1825.(FAN J,WANG X,XU H. Prediction method of tectonic coal thickness based on particle swarm optimized hybrid kernel extreme learning machine[J]. Journal of Computer Applications,2018,38(6):1820-1825.) |