[1] CARPINETO C, OSINSKI S, ROMANO G, et al. A survey of Web clustering engines[J]. ACM Computing Surveys, 2009, 41(3):Article No. 17. [2] CARPINETO C, ROMANO G. Optimal meta search results clustering[C]//Proceeding of the 33rd International ACM SIGIR Conference on Research and Development in Information Retrieval. New York:ACM, 2010:170-177. [3] PHAN X H, NGUYEN L M, HORIGUCHI S. Learning to classify short and sparse text & Web with hidden topics from large-scale data collections[C]//WWW 2008:Proceedings of the 17th International Conference on World Wide Web. New York:ACM, 2008:91-100. [4] BOLLEGALA D, MATSUO Y, ISHIZUKA M. Measuring semantic similarity between words using Web search engines[C]//Proceedings of the 16th International Conference on World Wide Web. New York:ACM, 2007:757-766. [5] HOTHO A, STAAB S, STUMME G. Ontologies improve text document clustering[C]//ICDM 2003:Proceedings of the Third IEEE International Conference on Data Mining. Washington, DC:IEEE Computer Society, 2003:541-544. [6] BANERJEE S, RAMANATHAN K, GUPTA A. Clustering short texts using Wikipedia[C]//Proceedings of the 30th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval. New York:ACM, 2007:787-788. [7] BENGIO Y, DUCHARME R, VINCENT P, et al. A neural probabilistic language model[J]. Journal of Machine Learning Research, 2003, 3(6):1137-1155. [8] MNIH A, HINTON G E. Three new graphical models for statistical language modelling[C]//Proceedings of the Twenty-Fourth International Conference on Machine Learning. New York, ACM:2007:641-648. [9] MIKOLOV T. Statistical language models based on neural networks[D]. Brno:Brno University of Technology, 2012:26-43. [10] COLLOBERT R, WESTON J, BOTTOU L, et al. Natural language processing (almost) from scratch[J]. Journal of Machine Learning Research, 2011, 12(7):2493-2537. [11] SOCHER R, PENNINGTON J, HUANG E H, et al. Semi-supervised recursive autoencoders for predicting sentiment distributions[C]//Proceedings of the 2011 Conference on Empirical Methods in Natural Language Processing. Stroudsburg, PA:Association for Computational Linguistics, 2011:151-161. [12] GHOSH S, CHARKRABORTY P, COHN E, et al. Characterizing diseases from unstructured text:a vocabulary driven Word2Vec approach[C]//Proceedings of the 25th ACM International Conference on Information and Knowledge Management. New York:ACM, 2016:1129-1138. [13] MIKOLOV T, CHEN K, CORRADO G, et al. Efficient estimation of word representations in vector space[EB/OL].[2018-08-16]. http://www.surdeanu.info/mihai/teaching/ista555-spring15/readings/mikolov2013.pdf. [14] MIKOLOV T, SUTSKEVER I, CHEN K, et al. Distributed representations of words and phrases and their compositionality[C]//Proceedings of the 26th International Conference on Neural Information Processing Systems. North Miami Beach, FL:Curran Associates Inc., 2013:3111-3119. [15] MIKOLOV T, YIH W, ZWEIG G. Linguistic regularities in continuous space word representations[C]//Proceedings of the 2013 Conference of the North American Chapter of the Association of Computational Linguistics. Stroudsburg, PA:Association for Computational Linguistics, 2013:746-751. [16] GABRILOVICH E, MARKOVITCH S. Computing semantic relatedness using Wikipedia-based explicit semantic analysis[C]//Proceedings of the 20th International Joint Conference on Artificial Intelligence. San Francisco, CA:Morgan Kaufmann Publishers Inc., 2007:1606-1611. [17] XU W, LIU X, GONG Y H. Document clustering based on non-negative matrix factorization[C]//Proceedings of the 26th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval. New York:ACM, 2003:267-273. [18] PAPADIMITRIOU C H, STEIGLITZ K. Combinatorial Optimization:Algorithms and Complexity[M]. New York:Courier Dover Publications, 1998:248-254. |