计算机应用 ›› 2019, Vol. 39 ›› Issue (8): 2359-2365.DOI: 10.11772/j.issn.1001-9081.2019010134

• 网络与通信 • 上一篇    下一篇

基于遗传算法和模糊C均值聚类的WSN分簇路由算法

董发志1, 丁洪伟1, 杨志军1,2, 熊成彪1, 张颖婕1   

  1. 1. 云南大学 信息学院, 昆明 650500;
    2. 云南省教育科学研究院, 昆明 650223
  • 收稿日期:2019-01-21 修回日期:2019-04-02 出版日期:2019-08-10 发布日期:2019-04-17
  • 通讯作者: 丁洪伟
  • 作者简介:董发志(1993-),男,云南楚雄人,硕士研究生,主要研究方向:无线传感器网络、轮询多址通信;丁洪伟(1964-),男,江西于都人,教授,博士,主要研究方向:轮询多址通信、随机多址通信、通信与信息系统;杨志军(1968-),男,云南保山人,高级工程师,博士,主要研究方向:计算机通信与网络、轮询系统;熊成彪(1995-),男,云南楚雄人,硕士研究生,主要研究方向:随机多址通信系统;张颖婕(1993-),女,云南昆明人,硕士研究生,主要研究方向:机器学习。
  • 基金资助:
    国家自然科学基金资助项目(61461053,61072079)。

WSN clustering routing algorithm based on genetic algorithm and fuzzy C-means clustering

DONG Fazhi1, DING Hongwei1, YANG Zhijun1,2, XIONG Chengbiao1, ZHANG Yingjie1   

  1. 1. School of Information Science and Engineering, Yunnan University, Kunming Yunnan 650500, China;
    2. Yunnan Academy of Educational Sciences, Kunming Yunnan 650223, China
  • Received:2019-01-21 Revised:2019-04-02 Online:2019-08-10 Published:2019-04-17
  • Supported by:
    This work is partially supported by the National Natural Science Foundation of China (61461053, 61072079).

摘要: 针对无线传感器网络(WSN)的节点能量有限、生命周期短、吞吐量低等问题,提出一种基于遗传算法(GA)和模糊C均值(FCM)聚类的WSN分簇路由算法GAFCMCR,采取"集中分簇,分布簇头选举"的方式。网络初始化时基站采用由GA优化的FCM聚类算法形成网络分簇。第一轮簇头由距簇中心最近的节点担任;从第二轮开始,簇头的选举由上一轮的簇头负责,选举过程综合考虑候选节点的剩余能量、与基站的距离、与簇内其他节点的平均距离三个因子,并根据网络状态实时调整三个因子的权重。在数据传输阶段,将轮询机制引入簇内通信。仿真结果表明,相同网络环境下,与LEACH算法和基于K-Means的均匀分簇路由(KUCR)算法相比,GAFCMCR将网络生命周期延长了105%和20%。GAFCMCR成簇效果良好,具有良好的能量均衡性和更高的吞吐量。

关键词: 无线传感器网络, 模糊C均值聚类, 遗传算法, 均匀分簇, 轮询机制

Abstract: Aiming at the problems of limited energy of nodes, short life cycle and low throughput of Wireless Sensor Network (WSN), a WSN Clustering Routing algorithm based on Genetic Algorithm (GA) and Fuzzy C-Means (FCM) clustering (GAFCMCR) was proposed, which adopted the method of centralized clustering and distributed cluster head election. Network clustering was performed by the base station using a FCM clustering algorithm optimized by GA during network initialization. The cluster head of the first round was the node closest to the center of the cluster. From the second round, the election of the cluster head was carried out by the cluster head of the previous round. The residual energy of candidate node, the distance from the node to the base station, and the mean distance from the node to other nodes in the cluster were considered in the election process, and the weights of these three factors were real-time adjusted according to network status. In the data transfer phase, the polling mechanism was introduced into intra-cluster communication. The simulation results show that, compared with the LEACH (Low Energy Adaptive Clustering Hierarchy) algorithm and the K-means-based Uniform Clustering Routing (KUCR) algorithm, the life cycle of the network in GAFCMCR is prolonged by 105% and 20% respectively. GAFCMCR has good clustering effect, good energy balance and higher throughput.

Key words: Wireless Sensor Network (WSN), Fuzzy C-Means (FCM) clustering, Genetic Algorithm (GA), uniform clustering, polling mechanism

中图分类号: