[1] TSANG E. A glimpse of constraint satisfaction[J]. Artificial Intelligence Review, 1999, 13(3):215-227. [2] MOLLOY M. Models for random constraint satisfaction problems[J]. SIAM Journal of Computing, 2003, 32(4):935-949. [3] SMITH B M, DYER M E. Locating the phase transition in binary constraint satisfaction problems[J]. Artificial Intelligence, 1996, 81(1/2):155-181 [4] ACHLIOPTAS D, MOLLOY M S O, KIROUSIS L M, et al. Random constraint satisfaction:a more accurate picture[J]. Constraints, 2001, 6(4):329-344. [5] GENT I P, MACINTYRE E, PROSSER P, et al. Random constraint satisfaction:flaws and structure[J]. Constraints, 2001, 6(4):345-372. [6] XU K, LI W. Exact phase transitions in random constraint satisfaction problems[J]. Journal of Artificial Intelligence Research, 2000, 12(1):93-103. [7] XU K, LI W. Many hard examples in exact phase transitions[J]. Theoretical Computer Science, 2006, 355(3):291-302. [8] XU K, BOUSSEMART F, HEMERY F, et al. Random constraint satisfaction:Easy generation of hard (satisfiable) instances[J]. Artificial Intelligence, 2007, 171(8/9):514-534. [9] LIU T, LIN X, WANG C, et al. Large hinge width on sparse random hypergraphas[C]//Proceedings of the 22nd International Joint Conference on Artificial Intelligence. Reston:AAAI, 2011:611-616. [10] ZHAO C, ZHENG Z. Threshold behaviors of a random constraint satisfaction problem with exact phase transitions[J]. Information Processing Letters, 2011, 111(20):985-988. [11] 徐伟,巩馥洲.值域增长约束满足问题的无回溯与随机行走策略的算法复杂性分析[J].计算机科学,2014,41(4):205-210.(XU W, GONG F Z. Computational complexity analysis of backtrack-free and random-walk strategies on constraint satisfaction problems with growing domains[J]. Computer Science, 2014, 41(4):205-210.) [12] 王晓峰,许道云.RB模型实例集上置信传播算法的收敛性[J].软件学报,2016,27(11):2712-2724.(WANG X F, XU D Y. Convergence of the belief propagation algorithm for RB model instances[J]. Journal of Software, 2016, 27(11):2712-2724.) [13] 沈静.约束满足问题的模型构造和相变现象[D].武汉:华中师范大学,2011:13-30.(SHEN J. A model of random constraint satisfaction problems and phase transitions[D]. Wuhan:Central China Normal University, 2011:13-30.) [14] 沈静,梅丹.可满足实例的归结复杂度[J].计算机工程与应用,2014,50(22):69-72.(SHEN J, MEI D. Resolution complexity of satisfiability instances[J]. Computer Engineering and Applications, 2014, 50(22):69-72.) [15] SHEN J, REN Y. Bounding the scaling window of random constraint satisfaction problems[J]. Journal of Combinatorial Optimization, 2016, 31(2):786-801. [16] 沈静,任耀峰,梅丹,等.一种产生可满足性难解实例的模型[J].海军工程大学学报,2016,28(3):5-8.(SHEN J, REN Y F, MEI D, et al. A model to generate hard satisfiable instances[J]. Journal of Naval University of Engineering, 2016, 28(3):5-8.) [17] ZHOU G, GAO Z, LIU J. On the constraint length of random-CSP[J]. Journal of Combinatorial Optimization, 2015, 30(1):188-200. [18] ZHAO C, ZHOU H, ZHENG Z, et al. A message-passing approach to random constraint satisfaction problems with growing domains[J]. Journal of Statistical Mechanics:Theory and Experiment, 2011(2):Article No. P02019. [19] 赵春艳,郑志明.一种基于变量熵求解约束满足问题的置信传播算法[J].中国科学:信息科学,2012,42(9):1170-1180.(ZHAO C Y, ZHENG Z M. A belief-propagation algorithm based on variable entropy for constraint satisfaction problems[J]. SCIENTIA SINICA Informationis, 2012, 42(9):1170-1180.) [20] ZHAO C, ZHANG P, ZHENG Z, et al. Analytical and belief-propagation studies of random constraint satisfaction problems with growing domains[J]. Physical Review E, Statistical, Nonlinear, and Soft Matter Physics, 2012, 85(1 Pt 2):016106. [21] 原志强,赵春艳.两种改进的模拟退火算法求解大值域约束足问题[J].计算机应用研究,2017,34(12):3611-3616.(YUAN Z Q, ZHAO C Y. Two improved simulated annealing algorithms for solving constraint satisfaction problems with large domains[J]. Application Research of Computers, 2017, 34(12):3611-3616.) [22] 吴拨荣,赵春艳,原志强.置信传播和模拟退火相结合求解约束满足问题[J].计算机应用研究,2019,36(5):1297-1301.(WU B R, ZHAO C Y, YUAN Z Q. Combining belief propagation and simulated annealing to solve random satisfaction problems[J]. Application Research of Computers, 2019, 36(5):1297-1301.) [23] CAI S, SU K L, SATTAR A, et al. Local search with edge weighting and configuration checking heuristics for minimum vertex cover[J]. Artificial Intelligence, 2011, 175(9/10):1672-1696. |