[1] 张晓莉, 杨亚新, 谢永成. 改进的蚁群算法在机器人路径规划上的应用[J]. 计算机工程与应用,2020,56(2):29-34.(ZHANG X L,YANG Y X,XIE Y C. Application of improved ant colony algorithm in robot path planning[J]. Computer Engineering and Applications,2020,56(2):29-34.) [2] 韩明, 刘教民, 吴朔媚, 等. 粒子群优化的移动机器人路径规划算法[J]. 计算机应用,2017,37(8):2258-2263.(HAN M,LIU J M,WU S M,et al. Path planning algorithm of mobile robot based on particle swarm optimization[J]. Journal of Computer Applications,2017,37(8):2258-2263.) [3] FAKOOR M,KOSARI A,JAFARZADEH M. Humanoid robot path planning with fuzzy Markov decision processes[J]. Journal of Applied Research and Technology,2016,14(5):300-310. [4] 李丽娜, 郭永强, 张晓东, 等. 萤火虫算法结合人工势场法的机器人路径规划[J]. 计算机工程与应用,2018,54(20):104-109. (LI L N,GUO Y Q,ZHANG X D,et al. Path planning algorithm for robot based on firefly algorithmcombined with artificial potential field method[J]. Computer Engineering and Applications,2018, 54(20):104-109.) [5] SHEKHAR R C,KEARNEY M,SHAMES I. Robust model predictive control of unmanned aerial vehicle using waysets[J]. Journal of Guidance, Control, and Dynamic, 2015, 38(10):1898-1907. [6] 李文广, 孙世宇, 李建增, 等. 分段优化RRT的无人机动态航迹规划算法[J]. 系统工程与电子技术,2018,40(8):1786-1793. (LI W G,SUN S Y,LI J Z,et al. UAV dynamic path planning algorithm based on segmentated optimization RRT[J]. Systems Engineering and Electronics,2018,40(8):1786-1793.) [7] 王生印, 龙腾, 王祝, 等. 基于即时修复式稀疏A*算法的动态路径规划[J]. 系统工程与电子技术,2018,40(12):2714-2721. (WANG S Y,LONG T,WANG Z,et al. Dynamic path planning using anytime repairing sparse A* algorithm[J]. Systems Engineering and Electronics,2018,40(12):2714-2721.) [8] 许凯波, 鲁海燕, 黄洋, 等. 基于双层蚁群算法和动态环境的机器人路径规划方法[J]. 电子学报, 2019, 47(10):2166-2176.(XU K B,LU H Y,HUANG Y,et al. Robot path planning based on doublelayer ant colony optimization algorithm and dynamic environment[J]. Acta Electronica Sinica, 2019, 47(10):2166-2176.) [9] 王中玉, 曾国辉, 黄勃, 等. 改进A*算法的机器人全局最优路径规划[J]. 计算机应用,2019,39(9):2517-2522.(WANG Z Y, ZENG G H,HUANG B,et al. Global optimal path planning for robots with improved A* algorithm[J]. Journal of Computer Applications,2019,39(9):2517-2522.) [10] 丁家如, 杜昌平, 赵耀, 等. 基于改进人工势场法的无人机路径规划算法[J]. 计算机应用,2016,36(1):287-290.(DING J R, DU C P,ZHAO Y,et al. Path planning algorithm for unmanned aerial vehicles based on improved artificial potential field[J]. Journal of Computer Applications,2016,36(1):287-290.) [11] 赵晓, 王铮, 黄程侃, 等. 基于改进A*算法的移动机器人路径规划[J]. 机器人,2018,40(6):903-910.(ZHAO X,WANG Z, HUANG C K,et al. Mobile robot path planning based on an improved A* algorithm[J]. Robot,2018,40(6):903-910.) [12] 王维, 裴东, 冯璋. 改进A*算法的移动机器人最短路径规划[J]. 计算机应用,2018,38(5):1523-1526.(WANG W,PEI D,FENG Z. The shortest path planning for mobile robots using improved A* algorithm[J]. Journal of Computer Applications, 2018,38(5):1523-1526.) [13] 林娜, 黄思铭, 拱长青. 基于自适应权重鸽群算法的无人机航路规划[J]. 计算机仿真,2018,35(1):38-42,125.(LIN N, HUANG S M,GONG C Q. UAV path planning based on adaptive weighted pigeon-inspired optimization algorithm[J]. Computer Simulation,2018,35(1):38-42,125.) [14] SZCZERBA R J,GALKOWSKI P,GLICKTEIN I S,et al. Robust algorithm for real-time route planning[J]. IEEE Transactions on Aerospace and Electronic Systems,2000,36(3):869-878. [15] LI C,DUAN H. Target detection approach for UAVs via improved pigeon-inspired optimization and edge potential function[J]. Aerospace Science and Technology,2014,39:352-360. [16] GOEL S. Pigeon optimization algorithm:a novel approach for solving optimization problems[C]//Proceedings of the 2014 International Conference on Data Mining and Intelligent Computing. Piscataway:IEEE,2014:1-5. [17] HART P E,NILSSON N J,RAPHAEL B. A formal basis for the heuristic determination of minimum cost paths in graphs[J]. IEEE Transactions on Systems Science and Cybernetics,1968,4(2):100-107. [18] 刘生伟, 马钺, 孟树峰, 等. 改进A*算法的AGV路径规划[J]. 计算机应用,2019,39(S2):41-44.(LIU S W,MA Y,MENG S F,et al. Improved A* algorithm for path planning of AGV[J]. Journal of Computer Applications,2019,39(S2):41-44.) [19] 姜坤霖, 李美安, 张宏伟. 面向旅行商问题的蚁群算法改进[J]. 计算机应用,2015,35(S2):114-117.(JIANG K L,LI M A,ZHANG H W. Improved ant colony algorithm for travelling salesman problem[J]. Journal of Computer Applications,2015, 35(S2):114-117.) [20] 赵克新, 黄长强, 王渊, 等. 基于混沌蚁狮算法的无人机航迹规划[J]. 飞行力学,2018,36(1):93-96.(ZHAO K X,HUANG C Q,WANG Y,et al. UAV path planning based on chaos ant lion algorithm[J]. Flight Dynamics,2018,36(1):93-96.) [21] DUAN H,QIAO P. Pigeon-inspired optimization:a new swarm intelligence optimizer for air robot path planning[J]. International Journal of Intelligent Computing and Cybernetics,2014,7(1):24-37. [22] 黄思铭. 基于改进鸽群算法的无人机航路规划研究[D]. 沈阳:沈阳航空航天大学,2018:16-21.(HUANG S M. Research on UAV path planning based on improved pigeons-inspired optimization algorithm[D]. Shenyang:Shenyang Aerospace University,2018:16-21.) [23] 李俊, 汪冲, 李波, 等. 基于多策略协同作用的粒子群优化算法[J]. 计算机应用,2016,36(3):681-686.(LI J,WANG C,LI B,et al. Particle swarm optimization algorithm based on multistrategy synergy[J]. Journal of Computer Applications,2016,36(3):681-686.) [24] 黄辰, 费继友, 刘洋, 等. 基于动态反馈A*蚁群算法的平滑路径规划方法[J]. 农业机械学报,2017,48(4):34-40,102. (HUANG C,FEI J Y,LIU Y,et al. Smooth path planning method based on dynamic feedback A* ant colony algorithm[J]. Transactions of the Chinese Society for Agricultural Machinery, 2017,48(4):34-40,102.) [25] 张永华, 杜煜, 潘峰, 等. 基于三次B样条曲线拟合的智能车轨迹跟踪算法[J]. 计算机应用,2018,38(6):1562-1567. (ZHANG Y H,DU Y,PAN F,et al. Intelligent vehicle path tracking algorithm based on cubic B-spline curve fitting[J]. Journal of Computer Applications,2018,38(6):1562-1567.) |