计算机应用 ›› 2020, Vol. 40 ›› Issue (11): 3366-3372.DOI: 10.11772/j.issn.1001-9081.2020040538

• 应用前沿、交叉与综合 • 上一篇    下一篇

改进蚁群和鸽群算法的机器人路径规划

刘昂1,2, 蒋近1,2, 徐克锋1   

  1. 1. 湘潭大学 自动化与电子信息学院, 湖南 湘潭 411105;
    2. 智能计算与信息处理教育部重点实验室(湘潭大学), 湖南 湘潭 411105
  • 收稿日期:2020-04-26 修回日期:2020-06-21 出版日期:2020-11-10 发布日期:2020-07-09
  • 通讯作者: 刘昂(1996-),男,湖北黄冈人,硕士研究生,主要研究方向:机器人路径规划、智能优化算法;liuang96@163.com
  • 作者简介:蒋近(1979-),男,湖南湘潭人,副教授,博士,主要研究方向:智能控制、运动控制、人工智能;徐克锋(1997-),男,广西岑溪人,硕士研究生,主要研究方向:智能服务机器
  • 基金资助:
    湖南省自然科学基金资助项目(2015JJ3126)。

Robot path planning based on improved ant colony and pigeon inspired optimization algorithm

LIU Ang1,2, JIANG Jin1,2, XU Kefeng1   

  1. 1. School of Automation and Electronic Information, Xiangtan University, Xiangtan Hunan 411105, China;
    2. Key Laboratory of Intelligent Computing and Information Processing of Ministry of Education(Xiangtan University), Xiangtan Hunan 411105, China
  • Received:2020-04-26 Revised:2020-06-21 Online:2020-11-10 Published:2020-07-09
  • Supported by:
    This work is partially supported by the Natural Science Foundation of Hunan Province (2015JJ3126).

摘要: 针对复杂环境下移动机器人路径规划中存在的迭代速度慢和路径欠优等问题,提出将全局与局部规划算法相结合的路径规划方法。首先,利用同步双向A*算法对蚁群算法的信息素进行优化,并对蚁群算法的转移概率和信息素更新机制进行改进,从而使算法的全局寻优速度更快,缩短移动机器人的路径长度;进一步地,将静态路径用于鸽群算法的初始化;然后,利用改进的鸽群算法对移动机器人进行了局部路径规划,通过引入模拟退火准则的方法解决局部最优问题,利用对数S型传递函数对鸽群数量的步长进行优化,从而能更好地避免与动态障碍物的碰撞。最后,利用B样条曲线对路径进行平滑化和重规划。仿真结果表明,该方法在全局静态和局部动态阶段均能生成路径长度短、评价值低的平滑路径,且收敛速度快,适合移动机器人在动态复杂环境中的穿行。

关键词: 移动机器人, 路径规划, 鸽群算法, 模拟退火准则, 平滑化, 重规划

Abstract: A method was proposed by combining the global and local path planning algorithms for the problems of slow iteration and not good path in mobile robot path planning under complex environment. Firstly, the synchronous bidirectional A* algorithm was used for the pheromone optimization of ant colony algorithm, and the transition probability and pheromone update mechanism of ant colony algorithm were improved, so that the global optimization of the algorithm was faster and the path length of the mobile robot was shortened. Furthermore, the static path was used to initialize the pigeon inspired optimization algorithm. Secondly, the improved pigeon inspired optimization algorithm was used for the local path planning of the mobile robot. The simulated annealing criteria were introduced to solve the local optimum problem, and the logarithmic S-type transfer function was used to optimize the step size of the number of pigeons, so as to better avoid the collision with dynamic obstacles. Finally, the cubic B-spline curve was used to smooth and replan the route. Simulation results indicate that the algorithm can generate smooth paths with short length and small evaluation value in both global static and local dynamic phases, and converge quickly, which is suitable for mobile robot to travel in dynamic and complex environments.

Key words: mobile robot, path planning, pigeon inspired optimization algorithm, simulated annealing criterion, smoothing, replanning

中图分类号: