[1] WANG Q, FAN H, SUN G, et al. Laplacian pyramid adversarial network for face completion[J]. Pattern Recognition, 2019, 88:493-505. [2] YIN X, LIU X. Multi-task convolutional neural network for pose-invariant face recognition[J]. IEEE Transactions on Image Processing, 2018, 27(2):964-975. [3] LU J, YUAN X, YAHAGI T. A method of face recognition based on fuzzy clustering and parallel neural networks[J]. Signal Processing, 2006, 86(8):2026-2039. [4] ZHANG K, ZHANG Z, LI Z, et al. Joint face detection and alignment using multitask cascaded convolutional networks[J]. IEEE Signal Processing Letters, 2016, 23(10):1499-1503. [5] CAO Y, GUAN D, HUANG W, et al. Pedestrian detection with unsupervised multispectral feature learning using deep neural networks[J]. Information Fusion, 2019, 46:206-217. [6] JUNG S I, HONG K S. Deep network aided by guiding network for pedestrian detection[J]. Pattern Recognition Letters, 2017, 90:43-49 [7] NEUBECK A, VAN GOOL L. Efficient non-maximum suppression[C]//Proceedings of the 18th International Conference on Pattern Recognition. Piscataway:IEEE, 2006:850-855 [8] SINGH B, DAVIS L S. An analysis of scale invariance in object detection-SNIP[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE, 2018:3578-3587 [9] LIU W, ANGUELOV D, ERHAN D, et al. SSD:single shot multibox detector[C]//Proceedings of the 14th European Conference on Computer Vision, LNCS 9905. Cham:Springer, 2016:21-37. [10] LIN T Y, DOLLAR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE, 2017:936-944. [11] ZHOU P, NI B, GENG C, et al. Scale-transferrable object detection[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE, 2018:528-537. [12] JADERBERG M, SIMONYAN K, ZISSERMAN A, et al. Spatial transformer networks[C]//Proceedings of the 2015 International Conference on Neural Information Processing Systems. New York:Curran Associates Inc., 2015:2017-2025. [13] HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE, 2018:7132-7141. [14] ZHANG H, GOODFELLOW I, METAXAS D, et al. Self-attention generative adversarial networks[C]//Proceedings of the 36th International Conference on Machine Learning. New York:PMLR, 2019:7354-7363. [15] 李晓光,付陈平,李晓莉,等.面向多尺度目标检测的改进Faster R-CNN算法[J].计算机辅助设计与图形学学报,2019,31(7):1095-1101.(LI X G, FU C P, LI X L, et al. Improved faster R-CNN for multi-scale object detection[J]. Journal of Computer-Aided Design and Computer Graphics, 2019, 31(7):1095-1101.) [16] 李静,降爱莲.复杂场景下基于R-FCN的小人脸检测研究[J/OL].计算机工程与应用:1-12[2019-04-22].http://kns.cnki.net/kcms/detail/Detail.aspx?dbname=CAPJLAST&filename=JSGG20190123006&v=. (LI J, JIANG A L. Face detection based on R-FCN in complex scenes[J/OL]. Journal of Computer Engineering and Applications:1-12[2019-04-22]. http://kns.cnki.net/kcms/detail/Detail.aspx?dbname=CAPJLAST&filename=JSGG20190123006&v=.) [17] REDMON J, FARHADI A. YOLO9000:better, faster, stronger[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE, 2017:6517-6525. [18] LI J, LIANG X, SHEN S, et al. Scale-aware fast R-CNN for pedestrian detection[J]. IEEE Transactions on Multimedia, 2018, 20(4):985-996. [19] SERMANET P, EIGEN D, ZHANG X, et al. OverFeat:integrated recognition, localization and detection using convolutional networks[EB/OL].[2019-04-11]. https://arxiv.org/pdf/1312.6229v4.pdf. [20] CAI Z, FAN Q, FERIS R S, et al. A unified multi-scale deep convolutional neural network for fast object detection[C]//Proceedings of the 14th European Conference on Computer Vision, LNCS 9908. Cham:Springer, 2016:354-370. [21] FU C, LIU W, RANGA A, TYAGI A, et al. DSSD:deconvolutional single shot detector[EB/OL].[2019-04-11]. https://arxiv.org/pdf/1701.06659.pdf. [22] 杨康,宋慧慧,张开华.基于双重注意力孪生网络的实时视觉跟踪[J].计算机应用,2019,39(6):1652-1656.(YANG K, SONG H H, ZHANG K H. Real-time visual tracking based on dual attention Siamese network[J]. Journal of Computer Applications, 2019, 39(6):1652-1656.) [23] QUAN Y, LI Z, ZHANG C. Object detection by combining deep dilated convolutions network and light-weight network[C]//Proceedings of the 12th International Conference on Knowledge Science, Engineering and Management, LNCS 11775. Cham:Springer, 2019:452-463. [24] WANG P, CHEN P, YUAN Y, et al. Understanding convolution for semantic segmentation[C]//Proceedings of the 2018 IEEE Winter Conference on Applications of Computer Vision. Piscataway:IEEE, 2018:1451-1460. [25] PENG D, SUN Z, CHEN Z, et al. Detecting heads using feature refine net and cascaded multi-scale architecture[C]//Proceedings of the 24th International Conference on Pattern Recognition. Piscataway:IEEE, 2018:2528-2533. |