计算机应用 ›› 2019, Vol. 39 ›› Issue (12): 3678-3684.DOI: 10.11772/j.issn.1001-9081.2019061118

• 应用前沿、交叉与综合 • 上一篇    下一篇

基于改进蚁群算法的铁路乘务排班计划编制

王东先1, 孟学雷1, 何国强1, 孙慧萍1, 王喜栋2   

  1. 1. 兰州交通大学 交通运输学院, 兰州 730070;
    2. 中国铁路兰州局集团有限公司 武威南车务段, 甘肃 武威 733000
  • 收稿日期:2019-06-27 修回日期:2019-09-05 出版日期:2019-12-10 发布日期:2019-10-08
  • 作者简介:王东先(1992-),男,甘肃武威人,硕士研究生,主要研究方向:轨道交通运行管理与决策优化;孟学雷(1979-),男,山东泰安人,教授,博士,主要研究方向:轨道交通运行管理与决策优化;何国强(1990-),男,甘肃白银人,硕士研究生,主要研究方向:智能算法、仓储物流管理优化;孙慧萍(1993-),女,甘肃定西人,硕士研究生,主要研究方向:轨道交通运行管理与决策优化;王喜栋(1993-),男,甘肃临洮人,助理工程师,主要研究方向:铁路车流组织优化、货物运输组织。
  • 基金资助:
    国家重点研发计划项目(2016YFB1200100);国家自然科学基金资助项目(71861022,61563028)。

Railway crew rostering plan based on improved ant colony optimization algorithm

WANG Dongxian1, MENG Xuelei1, HE Guoqiang1, SUN Huiping1, WANG Xidong2   

  1. 1. School of Traffic and Transportation, Lanzhou Jiaotong Unirersity, Lanzhou Gansu 730070, China;
    2. Wuwei South Station, China Railway Lanzhou Group Company, Limited, Wuwei Gansu 733000, China
  • Received:2019-06-27 Revised:2019-09-05 Online:2019-12-10 Published:2019-10-08
  • Contact: 孟学雷
  • Supported by:
    This work is partially supported by the National Key Research and Development Program of China (2016YFB1200100), the National Natural Science Foundation of China (71861022, 61563028).

摘要: 为了提升铁路乘务排班计划编制的质量和效率,将乘务排班计划编制问题抽象为单基地、考虑中途休息的多旅行商问题(MTSP),建立以排班周期最小、乘务交路间冗余接续时间分布最均衡为优化目标的单一循环乘务排班计划数学模型,并针对该模型提出了一种启发式修正蚁群算法。首先,构建满足时空约束的解空间,分别对乘务交路节点和接续路径设置信息素浓度;然后,确定基于修正的启发式信息,规定蚂蚁按乘务交路顺序依次出发,使蚂蚁遍历所有乘务交路;最后,从不同的乘务排班方案中选择最优的排班计划。以广深城际铁路为例对所提模型及算法进行验证,并与粒子群算法进行对比。实验结果表明:在相同的模型条件下,采用启发式修正蚁群算法编制的乘务排班计划平均月工时降低了8.5%,排班周期降低了9.4%,乘务人员超劳率为0。所提模型和算法能够压缩乘务排班周期,降低乘务成本,均衡工作量,避免乘务人员超劳。

关键词: 铁路, 乘务排班计划, 多旅行商问题, 冗余时间, 启发式修正蚁群算法

Abstract: In order to improve the quality and efficiency of railway crew rostering plan arrangement, the problem of crew rostering plan arrangement was abstracted as a Multi-Traveling Salesman Problem (MTSP) with single base and considering mid-way rest, a single-circulation crew rostering plan mathematical model aiming at the smallest rostering period and the most balanced distributed redundant connection time between crew routings was established, and a new amended heuristic ant colony optimization algorithm was proposed aiming at the model. Firstly, a solution space satisfying the spatial-temporal constraints was constructed and the pheromone concentration was set for the crew routing nodes and the continued paths respectively. Then, the amended heuristic information was adopted to make the ants start at the crew routing order and go through all the crew routings. Finally, the optimal crew rostering plan was selected from the different crew rostering schemes. The proposed model and algorithm were tested on the data of the intercity railway from Guangzhou to Shenzhen. The comparison results with the plan arranged by particle swarm optimization show that under the same model conditions, the crew rostering plan arranged by amended heuristic ant colony optimization algorithm has the average monthly man-hour reduced by 8.5%, the rostering period decreased by 9.4%, and the crew overwork rate of 0. The designed model and algorithm can compress the crew rostering cycle, reduce the crew cost, balance the workload, and avoid the overwork of crew.

Key words: railway, crew rostering plan, Multi-Traveling Salesman Problem (MTSP), redundant time, amended heuristic ant colony optimization algorithm

中图分类号: