| 1 | GOSAK M, MARKOVIČ R, DOLENŠEK J, et al. Network science of biological systems at different scales: a review[J]. Physics of Life Reviews, 201, 24:118-135. 10.3389/fphys.2021.612233 | 
																													
																						| 2 | GAUDELET T, MALOD-DOGNIN N, PRŽULJ N. Higher-order molecular organization as a source of biological function[J]. Bioinformatics, 2018, 34(17):i944-i953. 10.1093/bioinformatics/bty570 | 
																													
																						| 3 | PRŽULJ N. Biological network comparison using graphlet degree distribution[J]. Bioinformatics, 2007, 23(2):e177-e183. 10.1093/bioinformatics/btl301 | 
																													
																						| 4 | MILENKOVIĆ T, PRŽULJ N. Uncovering biological network function via graphlet degree signatures[J]. Cancer Informatics, 2008, 6:257-273. 10.4137/cin.s680 | 
																													
																						| 5 | XIE J, LU D, LI J, et al. Kernel differential subgraph reveals dynamic changes in biomolecular networks[J]. Journal of Bioinformatics and Computational Biology, 2017, 16(1): Article No. 1750027. 10.1142/s0219720017500275 | 
																													
																						| 6 | RADICCHI F, CASTELLANO C, CECCONI F, et al. Defining and identifying communities in networks[J]. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(9):2658-2663. 10.1073/pnas.0400054101 | 
																													
																						| 7 | PRŽULJ N, CORNEIL D G, JRRISICA I. Modeling interactome: scale-free or geometric?[J]. Bioinformaties, 2004, 20(18): 3508-3515. 10.1093/bioinformatics/bth436 | 
																													
																						| 8 | PRZULJ N. Biological network comparison using graphlet degree distribution[J]. Cancer Inform, 2008, 6: 257-273. 10.4137/cin.s680 | 
																													
																						| 9 | KUCHAIEV O, MILENKOVIĆ T, MEMIŠEVIĆ V, et al. Topoiogical network alignment uncovers biological function and phylogeny[J]. Journal of the Royal Society Interface, 2010, 7(50): 1341-1354. 10.1098/rsif.2010.0063 | 
																													
																						| 10 | MILENKOVIĆ T, NG W L, HAYES W, et al. Optimal network alignment with graphlet degree vectors[J]. Cancer Informatics, 2010, 9:121-137. 10.4137/cin.s4744 | 
																													
																						| 11 | RIBEIRO P, SILVA F, LOPES L. Parallel calculation of subgraph census in biological networks[EB/OL]. [2018-05-20]. . 10.5220/0002749600560065 | 
																													
																						| 12 | 安幸. 基于随机游走的Graphlet采样算法优化[D]. 武汉:华中科技大学, 2018:3-4. | 
																													
																						|  | AN X. Two optimizations for Graphlet random walk sampling algorithm[D]. Wuhan: Huazhong University of Science and Technology, 2018: 3-4. | 
																													
																						| 13 | HOČEVAR T, DEMŠAR J. A combinatorial approach to graphlet counting[J]. Bioinformatics, 2014, 30(4):559-565. 10.1093/bioinformatics/btt717 | 
																													
																						| 14 | AHMED N K, NEVILLE J, ROSSI R A, et al. Efficient graphlet counting for large networks[C]// Proceedings of the 2015 IEEE International Conference on Data Mining. Piscataway: IEEE, 2015: 1-10. 10.1109/icdm.2015.141 | 
																													
																						| 15 | 肖碧玉,李先彬,沈良忠,等.比较图元向量和点的聚类系数对差异网络的研究[J].生物信息学,2013,11(4):264-270. 10.3969/j.issn.1672-5565.2013-04.20130404 | 
																													
																						|  | XIAO B Y, LI X B, SHEN L Z, et al. Comparing graphlet orbit and clustering coefficient in differentially network[J]. Chinese Journal of Bioinformatics, 2013, 11(4): 264-270. 10.3969/j.issn.1672-5565.2013-04.20130404 | 
																													
																						| 16 | 杨伏长,朱嘉富,孙佳敏,等. 生物复杂网络motif发现的并行算法[J]. 计算机应用, 2019,39(1): 72-77. 10.11772/j.issn.1001-9081.2018071655 | 
																													
																						|  | YANG F Z, ZHU J F, SUN J M, et al. Parallel algorithm for bio-complex network motif discovery[J]. Journal of Computer Applications, 2019, 39(1): 72-77. 10.11772/j.issn.1001-9081.2018071655 | 
																													
																						| 17 | 肖碧玉,李先斌,刘文斌. 基于图元向量的差异共表达分析研究[J].电子学报, 2015, 43(10):2009-2013. 10.3969/j.issn.0372-2112.2015.10.019 | 
																													
																						|  | XIAO B Y, LI X B, LIU W B. Mining differential co-expression clusters based on graphlet orbits[J]. Acta Electronica Sinica, 2015, 43(10): 2009-2013. 10.3969/j.issn.0372-2112.2015.10.019 | 
																													
																						| 18 | HAGBERG A H, SWART P J, SCHULT D A. Exploring network structure, dynamics, and function using NetworkX[R]. Los Alamos: Los Alamos National Laboratory, 2008. | 
																													
																						| 19 | BARABÁSI A L, ALBERT R. Emergence of scaling in random networks[J]. Science, 1999, 286(5439):509-512. 10.1126/science.286.5439.509 | 
																													
																						| 20 | WATTS D J, STROGATZ S H. Collective dynamics of ‘small-world’ networks[J]. Nature, 1998, 393(6684):440-442. 10.1038/30918 | 
																													
																						| 21 | KIM J H, VU V H. Generating random regular graphs[C]// Proceedings of the 35th Annual ACM Symposium on Theory of Computing. New York: ACM, 2003:213-222. 10.1145/780542.780576 | 
																													
																						| 22 | STRING. Homepage of STRING[EB/OL]. [2018-05-20]. . 10.1177/0003131318759908 | 
																													
																						| 23 | BARABÁSI A L, OLTVAI Z N. Network biology: understanding the cell’s functional organization[J]. Nature Reviews Genetics, 2004, 5(2): 101-113. 10.1038/nrg1272 |