1 姚旭,王晓丹,张玉玺,等 . 特征选择方法综述[J]. 控制与决策, 2012, 27(2): 161-166, 192. YAO X , WANG X D , ZHANG Y X , et al . Summary of feature selection algorithms[J]. Control and Decision, 2012, 27(2): 161-166, 192.
2 毛勇,周晓波,夏铮,等 . 特征选择算法研究综述[J]. 模式识别与人工智能, 2007, 20(2):211-218. MAO Y , ZHOU X B , XIA Z , et al . A survey for study of feature selection algorithms[J]. Pattern Recognition and Artificial Intelligence, 2007, 20(2):211-218.
3 BISHOP C M . Pattern Recognition and Machine Learning[M]. New York: Springer, 2006:40-65.
4 周志华 .机器学习[M]. 北京:清华大学出版社, 2016:247-261 ZHOU Z H . Machine Learning[M]. Beijing: Tsinghua University Press, 2016:247-261.
5 XUE B , ZHANG M , BROWNE W N , et al . A survey on evolutionary computation approaches to feature selection[J]. IEEE Transactions on Evolutionary Computation, 2016, 20(4): 606-626.
6 GUYON I , ELISSEEFF A . An introduction to variable and feature selection[J]. Journal of Machine Learning Research, 2003, 3: 1157-1182.
7 LI J , CHENG K , WANG S , et al . Feature selection: a data perspective[J]. ACM Computing Surveys, 2018, 50(6): No.94.
8 ÖZŞEN S , GüNEŞ S . Attribute weighting via genetic algorithms for Attribute Weighted Artificial Immune System (AWAIS) and its application to heart disease and liver disorders problems[J]. Expert Systems with Applications, 2009, 36(1): 386-392.
9 TAHIR M A , BOURIDANE A , KURUGOLLU F . Simultaneous feature selection and feature weighting using hybrid tabu search/K-nearest neighbor classifier[J]. Pattern Recognition Letters, 2007, 28(4): 438-446.
10 HALL M A . Correlation-based feature selection of discrete and numeric class machine learning[EB/OL]. [2019-10-14].https://core.ac.uk/download/pdf/29195068.pdf.
11 GHAEMI M , FEIZI-DERAKHSHI M R . Forest optimization algorithm[J]. Expert Systems with Applications, 2014, 41(15): 6676-6687.
12 GHAEMI M , FEIZI-DERAKHSHI M R . Feature selection using forest optimization algorithm[J]. Pattern Recognition, 2016, 60: 121-129.
13 HUANG J , CAI Y , XU X . A hybrid genetic algorithm for feature selection wrapper based on mutual information[J]. Pattern Recognition Letters, 2007, 28(13): 1825-1844.
14 XUE B , ZHANG M , BROWNE W N . Particle swarm optimisation for feature selection in classification: novel initialisation and updating mechanisms[J]. Applied Soft Computing, 2014, 18:261-276.
15 MOUSTAKIDIS S P , THEOCHARIS J . SVM-FuzCoC: a novel SVM-based feature selection method using a fuzzy complementary criterion[J]. Pattern Recognition, 2010, 43(11): 3712-3729.
16 DASH M , LIU H . Feature selection for classification[J]. Intelligent Data Analysis, 1997, 1(1/2/3/4): 131-156.
17 LIU H , MOTODA H . Feature Selection for Knowledge Discovery and Data Mining, SECS 454[M]. Boston: Springer, 1998: 153-172.
18 MOLINA L C , BELANCHE L , à NEBOT . Feature selection algorithms: a survey and experimental evaluation[C]// Proceedings of the 2002 IEEE International Conference on Data Mining. Piscataway: IEEE, 2002: 306-313.
19 HALL M A . Correlation-based feature selection for discrete and numeric class machine learning[C]// Proceedings of the 17th International Conference on Machine Learning. San Francisco, CA: Morgan Kaufmann Publisher Inc., 2000: 359-366.
20 KIRA K , RENDELL L A . The feature selection problem: traditional methods and a new algorithm[C]// Proceedings of the 10th National Conference on Artificial Intelligence. Palo Alto, CA: AAAI Press, 1992:129-134.
21 KONONENKO I . Estimating attributes: analysis and extension of relief[C]// Proceedings of the 1994 European Conference on Machine Learning, LNCS 784. Berlin: Springer, 1994: 171-182.
22 LIU H , SETIONO R . Feature selection and classification — a probabilistic wrapper approach[C]// Proceedings of the 1996 International Conference on Industrial and Engineering Applications of Artificial Intelligence and Expert Systems. Philadelphia, PA: Gordon and Breach Science Publishers, 1996: 419-424.
23 HSU W H . Genetic wrappers for feature selection in decision tree induction and variable ordering in Bayesian network structure learning[J]. Information Sciences, 2004, 163(1/2/3): 103-122.
24 CHIANG L H , PELL R J . Genetic algorithms combined with discriminant analysis for key variable identification[J]. Journal of Process Control, 2004, 14(2): 143-155.
25 GUYON I , WESTON J , BARNHILL S , et al . Gene selection for cancer classification using support vector machines[J]. Machine Learning, 2002, 46(1/2/3): 389-422.
26 TIKHONOV A N , ARSENIN V Y . Solutions of Ill-Posed Problems[M]. Washington, DC: V.H. Winston & Sons, 1977: 64-68.
27 TIBSHIRANI R . Regression shrinkage and selection via the Lasso[J]. Journal of the Royal Statistical Society: Series B (Methodological), 1996, 58(1): 267-288.
28 姚新,刘勇 .进化算法研究进展[J].计算机学报, 1995, 18(9): 694-706. (YAO X, LIU Y. Advances in evolutionary algorithms[J]. Chinese Journal of Computers, 1995, 18(9): 694-706.)
29 COELLO C A C , LAMONT G B , VELDHUIZEN D A VAN . Multi-criteria decision making[M]// Evolutionary Algorithms for Solving Multi-Objective Problems, 2nd ed. Boston: Springer, 2007:515-545.
30 YANG J , HONAVAR V . Feature subset selection using a genetic algorithm[M]// LIU H, MOTODA H. Feature Extraction, Construction and Selection, SECS 453. Cham: Springer, 1998: 117-136.
31 DONG H , LI T , DING R , et al . A novel hybrid genetic algorithm with granular information for feature selection and optimization[J]. Applied Soft Computing, 2018, 65:33-46.
32 DORIGO M , STüTZLE T . Ant colony optimization: overview and recent advances[M]// Handbook of Metaheuristics, ISOR 272. Cham: Springer, 2019: 311-351.
33 DORIGO M , BIRATTARI M . Ant colony optimization[M]// SAMMUT C, WEBB G I. Encyclopedia of Machine Learning. Cham: Springer, 2010: 25-33.
34 KABIR M M , SHAHJAHAN M , MURASE K . A new hybrid ant colony optimization algorithm for feature selection[J]. Expert Systems with Applications, 2012, 39(3):3747-3763.
35 WAN Y , WANG M , YE Z , et al . A feature selection method based on modified binary coded ant colony optimization algorithm[J]. Applied Soft Computing, 2016, 49:248-258.
36 POLI R , KENNEDY J , BLACKWELL T . Particle swarm optimization[J]. Swarm Intelligence, 2007, 1(1):33-57.
37 KENNEDY J . Particle swarm optimization[M]// SAMMUT C, WEBB G I. Encyclopedia of Machine Learning. Boston: Springer, 2011: 760-766.
38 ZHANG Y , GONG D , HU Y , et al . Feature selection algorithm based on bare bones particle swarm optimization[J]. Neurocomputing, 2015, 148:150-157.
39 TRAN B , XUE B , ZHANG M . Overview of particle swarm optimization for feature selection in classification[C]// Proceedings of the 2014 Asia-Pacific Conference on Simulated Evolution and Learning, LNCS 8886. Cham: Springer, 2014:605-617.
40 聂大干 . 森林优化算法的改进及离散化研究[D]. 兰州:兰州大学, 2016:7-10. (NIE D G. Research om improvements and discretization of forest optimization algorithm[D]. Lanzhou: Lanzhou University, 2016:7-10.)
41 ALTMAN N S . An introduction to kernel and nearest-neighbor nonparametric regression[J]. The American Statistician, 1992, 46(3):175-185.
42 CORTES C , VAPNIK V . Support-vector networks[J]. Machine Learning, 1995, 20(3):273-297.
43 SALZBERG S L . Book review: C4.5: Programs for Machine Learning by J. Ross Quinlan. Morgan Kaufmann Publishers, Inc., 1993[J]. Machine Learning, 1994, 16(3): 235-240.
44 Machine Learning Repository UCI . Welcome to the UC Irvine Machine Learning Repository! [DB/OL]. [2019-10-14]. http://www.ics.uci.edu/~mlearn/MLRepository.html. |