《计算机应用》唯一官方网站 ›› 2020, Vol. 40 ›› Issue (2): 503-509.DOI: 10.11772/j.issn.1001-9081.2019091626
收稿日期:
2019-08-30
修回日期:
2019-09-24
接受日期:
2019-10-09
发布日期:
2019-10-31
出版日期:
2020-02-10
通讯作者:
程玉胜
作者简介:
宋帆(1992—),男,安徽铜陵人,硕士研究生,CCF会员,主要研究方向:多标记学习、神经网络基金资助:
Yusheng CHENG1,2(), Fan SONG1, Yibin WANG1,2, Kun QIAN1
Received:
2019-08-30
Revised:
2019-09-24
Accepted:
2019-10-09
Online:
2019-10-31
Published:
2020-02-10
Contact:
Yusheng CHENG
About author:
SONG Fan, born in 1992, M. S. candidate. His research interests include multi-label learning, neural network.Supported by:
摘要:
特征选择对于分类器的分类精度和泛化性能起重要作用。目前的多标记特征选择算法主要利用最大相关性最小冗余性准则在全部特征集中进行特征选择,没有考虑专家特征,因此多标记特征选择算法的运行时间较长、复杂度较高。实际上,在现实生活中专家依据几个或者多个关键特征就能够直接决定整体的预测方向。如果提取关注这些信息,必将减少特征选择的计算时间,甚至提升分类器性能。基于此,提出一种基于专家特征的条件互信息多标记特征选择算法。首先将专家特征与剩余的特征相联合,再利用条件互信息得出一个与标记集合相关性由强到弱的特征序列,最后通过划分子空间去除冗余性较大的特征。该算法在7个多标记数据集上进行了实验对比,结果表明该算法较其他特征选择算法有一定优势,统计假设检验与稳定性分析进一步证明了所提出算法的有效性和合理性。
中图分类号:
程玉胜, 宋帆, 王一宾, 钱坤. 基于专家特征的条件互信息多标记特征选择算法[J]. 计算机应用, 2020, 40(2): 503-509.
Yusheng CHENG, Fan SONG, Yibin WANG, Kun QIAN. Multi-label feature selection algorithm based on conditional mutual information of expert feature[J]. Journal of Computer Applications, 2020, 40(2): 503-509.
数据集 | 样本数 | 特征数 | 类别数 | 训练数 | 测试数 |
---|---|---|---|---|---|
Health | 5 000 | 612 | 32 | 2 000 | 3 000 |
Recreation | 5 000 | 606 | 22 | 2 000 | 3 000 |
Artificial | 5 000 | 462 | 26 | 2 000 | 3 000 |
Reference | 5 000 | 793 | 33 | 2 000 | 3 000 |
Entertainment | 5 000 | 640 | 21 | 2 000 | 3 000 |
Business | 5 000 | 438 | 30 | 2 000 | 3 000 |
Compute | 5 000 | 681 | 33 | 2 000 | 3 000 |
表1 多标记数据集
Tab. 1 Multi-label datasets
数据集 | 样本数 | 特征数 | 类别数 | 训练数 | 测试数 |
---|---|---|---|---|---|
Health | 5 000 | 612 | 32 | 2 000 | 3 000 |
Recreation | 5 000 | 606 | 22 | 2 000 | 3 000 |
Artificial | 5 000 | 462 | 26 | 2 000 | 3 000 |
Reference | 5 000 | 793 | 33 | 2 000 | 3 000 |
Entertainment | 5 000 | 640 | 21 | 2 000 | 3 000 |
Business | 5 000 | 438 | 30 | 2 000 | 3 000 |
Compute | 5 000 | 681 | 33 | 2 000 | 3 000 |
数据集 | Original | MDDMspc | MDDMproj | PMU | MFSLS | MFSEF |
---|---|---|---|---|---|---|
均值 | 0.625 8 | 0.611 7 | 0.607 9 | 0.610 8 | 0.645 8 | 0.649 2 |
Health | 0.681 2(3) | 0.679 4(4) | 0.651 6(6) | 0.670 9(5) | 0.723 7(2) | 0.728 0(1) |
Recreation | 0.454 7(4) | 0.449 7(5) | 0.462 8(3) | 0.444 1(6) | 0.510 2(2) | 0.522 5(1) |
Artificial | 0.509 4(3) | 0.497 4(4) | 0.484 8(6) | 0.490 9(5) | 0.536 3(2) | 0.536 4(1) |
Reference | 0.619 4(3) | 0.601 4(5) | 0.599 2(6) | 0.614 5(4) | 0.630 4(2) | 0.634 7(1) |
Entertainment | 0.602 3(3) | 0.551 3(6) | 0.558 8(5) | 0.567 1(4) | 0.603 2(2) | 0.604 0(1) |
Business | 0.879 8(1) | 0.870 7(5) | 0.873 1(4) | 0.862 8(6) | 0.876 2(3) | 0.876 5(2) |
Computer | 0.633 5(3) | 0.631 9(4) | 0.625 0(6) | 0.625 2(5) | 0.640 5(2) | 0.642 4(1) |
表2 各算法在7个数据集上的平均精度测试结果
Tab. 2 AP(↑) results of each algorithm on 7 datasets
数据集 | Original | MDDMspc | MDDMproj | PMU | MFSLS | MFSEF |
---|---|---|---|---|---|---|
均值 | 0.625 8 | 0.611 7 | 0.607 9 | 0.610 8 | 0.645 8 | 0.649 2 |
Health | 0.681 2(3) | 0.679 4(4) | 0.651 6(6) | 0.670 9(5) | 0.723 7(2) | 0.728 0(1) |
Recreation | 0.454 7(4) | 0.449 7(5) | 0.462 8(3) | 0.444 1(6) | 0.510 2(2) | 0.522 5(1) |
Artificial | 0.509 4(3) | 0.497 4(4) | 0.484 8(6) | 0.490 9(5) | 0.536 3(2) | 0.536 4(1) |
Reference | 0.619 4(3) | 0.601 4(5) | 0.599 2(6) | 0.614 5(4) | 0.630 4(2) | 0.634 7(1) |
Entertainment | 0.602 3(3) | 0.551 3(6) | 0.558 8(5) | 0.567 1(4) | 0.603 2(2) | 0.604 0(1) |
Business | 0.879 8(1) | 0.870 7(5) | 0.873 1(4) | 0.862 8(6) | 0.876 2(3) | 0.876 5(2) |
Computer | 0.633 5(3) | 0.631 9(4) | 0.625 0(6) | 0.625 2(5) | 0.640 5(2) | 0.642 4(1) |
数据集 | Original | MDDMspc | MDDMproj | PMU | MFSLS | MFSEF |
---|---|---|---|---|---|---|
均值 | 0.047 1 | 0.047 5 | 0.047 3 | 0.047 0 | 0.045 4 | 0.044 6 |
Health | 0.045 8(5) | 0.043 8(4) | 0.046 2(6) | 0.043 5(3) | 0.041 0(2) | 0.038 6(1) |
Recreation | 0.061 8(3) | 0.063 3(5) | 0.061 9(4) | 0.063 7(6) | 0.059 8(2) | 0.058 8(1) |
Artificial | 0.061 2(4) | 0.061 6(6) | 0.060 9(3) | 0.061 5(5) | 0.058 7(1) | 0.059 4(2) |
Reference | 0.031 4(4) | 0.032 4(6) | 0.031 1(3) | 0.030 7(2) | 0.031 5(5) | 0.028 8(1) |
Entertainment | 0.061 2(4) | 0.062 4(6) | 0.062 0(5) | 0.060 7(3) | 0.059 4(2) | 0.059 1(1) |
Business | 0.026 9(1) | 0.028 0(4.5) | 0.028 0(4.5) | 0.028 5(6) | 0.027 4(3) | 0.027 2(2) |
Computer | 0.041 2(6) | 0.040 8(4.5) | 0.040 8(4.5) | 0.040 5(3) | 0.040 1(2) | 0.040 0(1) |
表3 各算法在7个数据集上的海明损失测试结果
Tab. 3 HL(↓) results of each algorithm on 7 datasets
数据集 | Original | MDDMspc | MDDMproj | PMU | MFSLS | MFSEF |
---|---|---|---|---|---|---|
均值 | 0.047 1 | 0.047 5 | 0.047 3 | 0.047 0 | 0.045 4 | 0.044 6 |
Health | 0.045 8(5) | 0.043 8(4) | 0.046 2(6) | 0.043 5(3) | 0.041 0(2) | 0.038 6(1) |
Recreation | 0.061 8(3) | 0.063 3(5) | 0.061 9(4) | 0.063 7(6) | 0.059 8(2) | 0.058 8(1) |
Artificial | 0.061 2(4) | 0.061 6(6) | 0.060 9(3) | 0.061 5(5) | 0.058 7(1) | 0.059 4(2) |
Reference | 0.031 4(4) | 0.032 4(6) | 0.031 1(3) | 0.030 7(2) | 0.031 5(5) | 0.028 8(1) |
Entertainment | 0.061 2(4) | 0.062 4(6) | 0.062 0(5) | 0.060 7(3) | 0.059 4(2) | 0.059 1(1) |
Business | 0.026 9(1) | 0.028 0(4.5) | 0.028 0(4.5) | 0.028 5(6) | 0.027 4(3) | 0.027 2(2) |
Computer | 0.041 2(6) | 0.040 8(4.5) | 0.040 8(4.5) | 0.040 5(3) | 0.040 1(2) | 0.040 0(1) |
数据集 | Original | MDDMspc | MDDMproj | PMU | MFSLS | MFSEF |
---|---|---|---|---|---|---|
均值 | 0.105 8 | 0.108 9 | 0.110 7 | 0.108 1 | 0.101 9 | 0.100 6 |
Health | 0.060 5(3) | 0.065 2(5) | 0.069 9(6) | 0.063 5(4) | 0.056 3(1) | 0.056 5(2) |
Recreation | 0.191 4(5) | 0.189 2(3) | 0.192 4(6) | 0.189 5(4) | 0.177 0(2) | 0.173 0(1) |
Artificial | 0.152 0(3) | 0.153 9(5) | 0.157 6(6) | 0.153 0(4) | 0.146 8(2) | 0.145 7(1) |
Reference | 0.091 9(4) | 0.092 5(5) | 0.093 3(6) | 0.087 0(2) | 0.088 3(3) | 0.085 5(1) |
Entertainment | 0.115 4(3) | 0.126 4(6) | 0.125 8(5) | 0.122 6(4) | 0.115 0(2) | 0.113 1(1) |
Business | 0.037 4(1) | 0.043 3(5) | 0.041 6(4) | 0.045 9(6) | 0.040 2(2) | 0.040 7(3) |
Computer | 0.092 2(4) | 0.091 9(3) | 0.094 5(5) | 0.095 2(6) | 0.089 6(2) | 0.089 4(1) |
表4 各算法在7个数据集上的排序损失测试结果
Tab. 4 RL(↓) results of each algorithm on 7 datasets
数据集 | Original | MDDMspc | MDDMproj | PMU | MFSLS | MFSEF |
---|---|---|---|---|---|---|
均值 | 0.105 8 | 0.108 9 | 0.110 7 | 0.108 1 | 0.101 9 | 0.100 6 |
Health | 0.060 5(3) | 0.065 2(5) | 0.069 9(6) | 0.063 5(4) | 0.056 3(1) | 0.056 5(2) |
Recreation | 0.191 4(5) | 0.189 2(3) | 0.192 4(6) | 0.189 5(4) | 0.177 0(2) | 0.173 0(1) |
Artificial | 0.152 0(3) | 0.153 9(5) | 0.157 6(6) | 0.153 0(4) | 0.146 8(2) | 0.145 7(1) |
Reference | 0.091 9(4) | 0.092 5(5) | 0.093 3(6) | 0.087 0(2) | 0.088 3(3) | 0.085 5(1) |
Entertainment | 0.115 4(3) | 0.126 4(6) | 0.125 8(5) | 0.122 6(4) | 0.115 0(2) | 0.113 1(1) |
Business | 0.037 4(1) | 0.043 3(5) | 0.041 6(4) | 0.045 9(6) | 0.040 2(2) | 0.040 7(3) |
Computer | 0.092 2(4) | 0.091 9(3) | 0.094 5(5) | 0.095 2(6) | 0.089 6(2) | 0.089 4(1) |
数据集 | Original | MDDMspc | MDDMproj | PMU | MFSLS | MFSEF |
---|---|---|---|---|---|---|
均值 | 0.474 3 | 0.491 4 | 0.496 8 | 0.495 5 | 0.441 5 | 0.438 9 |
Health | 0.420 7(4) | 0.405 3(3) | 0.446 3(6) | 0.431 3(5) | 0.347 7(2) | 0.340 0(1) |
Recreation | 0.706 3(4) | 0.714 3(5) | 0.688 3(3) | 0.719 0(6) | 0.616 3(2) | 0.608 3(1) |
Artificial | 0.632 7(3) | 0.647 0(4) | 0.667 0(6) | 0.657 0(5) | 0.584 0(2) | 0.583 7(1) |
Reference | 0.473 0(3) | 0.497 3(6) | 0.496 0(5) | 0.491 0(4) | 0.461 7(2) | 0.454 0(1) |
Entertainment | 0.529 7(2) | 0.602 0(6) | 0.599 7(5) | 0.584 7(4) | 0.525 7(1) | 0.533 0(3) |
Business | 0.121 3(1) | 0.128 3(5) | 0.126 3(4) | 0.136 0(6) | 0.122 7(2.5) | 0.122 7(2.5) |
Computer | 0.436 3(3) | 0.445 3(4) | 0.453 7(6) | 0.449 7(5) | 0.432 3(2) | 0.430 7(1) |
表5 各算法在7个数据集上的1-错误率测试结果
Tab. 5 OE(↓) results of each algorithm on 7 datasets
数据集 | Original | MDDMspc | MDDMproj | PMU | MFSLS | MFSEF |
---|---|---|---|---|---|---|
均值 | 0.474 3 | 0.491 4 | 0.496 8 | 0.495 5 | 0.441 5 | 0.438 9 |
Health | 0.420 7(4) | 0.405 3(3) | 0.446 3(6) | 0.431 3(5) | 0.347 7(2) | 0.340 0(1) |
Recreation | 0.706 3(4) | 0.714 3(5) | 0.688 3(3) | 0.719 0(6) | 0.616 3(2) | 0.608 3(1) |
Artificial | 0.632 7(3) | 0.647 0(4) | 0.667 0(6) | 0.657 0(5) | 0.584 0(2) | 0.583 7(1) |
Reference | 0.473 0(3) | 0.497 3(6) | 0.496 0(5) | 0.491 0(4) | 0.461 7(2) | 0.454 0(1) |
Entertainment | 0.529 7(2) | 0.602 0(6) | 0.599 7(5) | 0.584 7(4) | 0.525 7(1) | 0.533 0(3) |
Business | 0.121 3(1) | 0.128 3(5) | 0.126 3(4) | 0.136 0(6) | 0.122 7(2.5) | 0.122 7(2.5) |
Computer | 0.436 3(3) | 0.445 3(4) | 0.453 7(6) | 0.449 7(5) | 0.432 3(2) | 0.430 7(1) |
1 | GIBAJA E, VENTURA S. A tutorial on multilabel learning[J]. ACM Computing Surveys, 2015,47(3):1-38. 10.1145/2716262 |
2 | 何志芬,杨明,刘会东. 多标记分类和标记相关性的联合学习[J]. 软件学报, 2014, 25(9):1967-1981. |
HE Z F, YANG M, LIU H D. Joint learning of multi-label classification and label correlations[J]. Journal of Software, 2014, 25(9):1967-1981. | |
3 | WANG Z, CHEN T, LI G, et al. Multi-label image recognition by recurrently discovering attentional regions[C]// Proceedings of the 2017 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2017: 464-472. 10.1109/iccv.2017.58 |
4 | OZONAT K, YOUNG D. Towards a universal marketplace over the web: statistical multi-label classification of service provider forms with simulated annealing[C]// Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2009:1295-1304. 10.1145/1557019.1557158 |
5 | SHU X, LAI D, XU H, et al. Learning shared subspace for multi-label dimensionality reduction via dependence maximization[J]. Neurocomputing, 2015, 168: 356-364. 10.1016/j.neucom.2015.05.090 |
6 | PEREIRA R B, PLASTINO A, ZADROZNY B, et al. Categorizing feature selection methods for multi-label classification[J]. Artificial Intelligence Review, 2018, 49(1): 57-78. 10.1007/s10462-016-9516-4 |
7 | ZHANG Y, ZHOU Z. Multilabel dimensionality reduction via dependence maximization[J]. ACM Transactions on Knowledge Discovery from Data, 2010, 4(3): No.14. 10.1145/1839490.1839495 |
8 | LEE J, KIM D W. Feature selection for multi-label classification using multivariate mutual information[J]. Pattern Recognition Letters, 2013, 34(3): 349-357. 10.1016/j.patrec.2012.10.005 |
9 | LIN Y, HU Q, LIU J, et al. Multi-label feature selection based on neighborhood mutual information[J]. Applied Soft Computing, 2016, 38: 244-256. 10.1016/j.asoc.2015.10.009 |
10 | 刘景华,林梦雷,王晨曦,等. 基于局部子空间的多标记特征选择算法[J]. 模式识别与人工智能, 2016, 29(3): 240-251. |
LIU J H, LIN M L, WANG C X, et al. Multi-label feature selection algorithm based on local subspace[J]. Pattern Recognition and Artificial Intelligence, 2016, 29(3): 240-251. | |
11 | 王晨曦,林耀进,唐莉,等. 基于信息粒化的多标记特征选择算法[J]. 模式识别与人工智能, 2018, 31(2): 123-131. 10.16451/j.cnki.issn1003-6059.201802003 |
WANG C X, LIN Y J, TANG L, et al. Multi-label feature selection based on information granulation[J]. Pattern Recognition and Artificial Intelligence, 2018, 31(2): 123-131. 10.16451/j.cnki.issn1003-6059.201802003 | |
12 | LEE J, LIM H, KIM D W. Approximating mutual information for multi-label feature selection[J]. Electronics Letters, 2012, 48(15): 929-930. 10.1049/el.2012.1600 |
13 | YU S, HUANG T. Exponential weighted entropy and exponential weighted mutual information[J]. Neurocomputing, 2017, 249: 86-94. 10.1016/j.neucom.2017.03.075 |
14 | LI F, MIAO D, PEDRYCZ W. Granular multi-label feature selection based on mutual information[J]. Pattern Recognition, 2017, 67: 410-423. 10.1016/j.patcog.2017.02.025 |
15 | ZHANG M, ZHOU Z. ML-kNN: a lazy learning approach to multi-label learning[J]. Pattern recognition, 2007, 40(7): 2038-2048. 10.1016/j.patcog.2006.12.019 |
16 | ZHANG M, ZHOU Z. A review on multi-label learning algorithms[J]. IEEE Transactions on Knowledge and Data Engineering, 2014, 26(8):1819-1837. 10.1109/tkde.2013.39 |
17 | FLEURET F. Fast binary feature selection with conditional mutual information[J]. Journal of Machine Learning Research, 2004, 5: 1531-1555. |
18 | 杨明,王飞. 一种基于局部随机子空间的分类集成算法[J]. 模式识别与人工智能, 2012, 25(4): 595-603. 10.3969/j.issn.1003-6059.2012.04.006 |
YANG M, WANG F. A classifier ensemble algorithm based on local random subspace [J]. Pattern Recognition and Artificial Intelligence, 2012, 25(4): 595-603. 10.3969/j.issn.1003-6059.2012.04.006 | |
19 | TSOUMAKAS G, VLAHAVAS I. Random k-labelsets: an ensemble method for multilabel classification[C]// Proceedings of the 18th European Conference on Machine Learning, LNCS4701. Berlin: Springer, 2007: 406-417. 10.1007/978-3-540-74958-5_38 |
20 | ZHANG M, PEÑA J M, ROBLES V. Feature selection for multi-label naive Bayes classification[J]. Information Sciences, 2009, 179(19): 3218-3229. 10.1016/j.ins.2009.06.010 |
21 | DEMŠAR J. Statistical comparisons of classifiers over multiple data sets[J]. Journal of Machine Learning Research, 2006, 7: 1-30. |
22 | ZHANG M, WU L. LIFT: multi-label learning with label-specific features[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(1): 107-120. 10.1109/tpami.2014.2339815 |
23 | 程玉胜,钱坤,王一宾,等.融合萤火虫方法的多标签懒惰学习算法[J].计算机应用,2019,39(5):1305-1311. 10.11772/j.issn.1001-9081.2018109182 |
CHENG Y S, QIAN K, WANG Y B, et al. Multi-label lazy learning algorithm based on firefly method[J]. Journal of Computer Applications, 2019, 39(5): 1305-1311. 10.11772/j.issn.1001-9081.2018109182 |
[1] | 湛航, 何朗, 黄樟灿, 李华峰, 张蔷, 谈庆. 改进的基于层次距离的基因表达式编程特征选择分类算法[J]. 计算机应用, 2021, 41(9): 2658-2667. |
[2] | 祝承, 赵晓琦, 赵丽萍, 焦玉宏, 朱亚飞, 陈建英, 周伟, 谭颖. 基于谱聚类半监督特征选择的功能磁共振成像数据分类[J]. 计算机应用, 2021, 41(8): 2288-2293. |
[3] | 李蒙蒙, 秦伟, 刘艺, 刁兴春. 结合头脑风暴优化的混合蚁群优化算法[J]. 计算机应用, 2021, 41(8): 2412-2417. |
[4] | 贾鹤鸣, 姜子超, 李瑶, 孙康健. 基于改进斑点鬣狗优化算法的同步优化特征选择[J]. 计算机应用, 2021, 41(5): 1290-1298. |
[5] | 林筠超, 万源. 基于图结构优化的自适应多度量非监督特征选择方法[J]. 计算机应用, 2021, 41(5): 1282-1289. |
[6] | 张志浩, 林耀进, 卢舜, 郭晨, 王晨曦. 缺失标记下基于类属属性的多标记特征选择[J]. 计算机应用, 2021, 41(10): 2849-2857. |
[7] | 林腾涛, 查思明, 陈蕾, 龙显忠. 图趋势过滤诱导的噪声容错多标记学习模型[J]. 计算机应用, 2021, 41(1): 8-14. |
[8] | 顾桐, 许国良, 李万林, 李家浩, 王志愿, 雒江涛. 基于集成LightGBM和贝叶斯优化策略的房价智能评估模型[J]. 计算机应用, 2020, 40(9): 2762-2767. |
[9] | 黄学雨, 徐浩特, 陶剑文. 具有特征选择的多源自适应分类框架[J]. 计算机应用, 2020, 40(9): 2499-2506. |
[10] | 刘丹, 姚立霜, 王云锋, 裴作飞. 面向类不平衡流量数据的分类模型[J]. 计算机应用, 2020, 40(8): 2327-2333. |
[11] | 肖跃雷, 张云娇. 基于特征选择和超参数优化的恐怖袭击组织预测方法[J]. 计算机应用, 2020, 40(8): 2262-2267. |
[12] | 汪志远, 降爱莲, 奥斯曼·穆罕默德. 基于正则互表示的无监督特征选择方法[J]. 计算机应用, 2020, 40(7): 1896-1900. |
[13] | 曹堉, 王成, 王鑫, 高悦尔. 基于时空节点选择和深度学习的城市道路短时交通流预测[J]. 计算机应用, 2020, 40(5): 1488-1493. |
[14] | 谢琪, 徐旭, 程耕国, 陈和平. 基于新的森林优化算法的特征选择算法[J]. 计算机应用, 2020, 40(5): 1266-1271. |
[15] | 曾元鹏, 王开军, 林崧. 面向二类区分能力的干扰熵特征选择方法[J]. 计算机应用, 2020, 40(3): 626-630. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||