[1] SOKOLOY V F. Problems of adaptive optimal control of discrete-time systems under bounded disturbance and linear performance indexes[J]. Automation and Remote Control, 2018, 79(6):1086-1099. [2] NA J, CHEN A S, HERRMANN G, et al. Vehicle engine torque estimation via unknown input observer and adaptive parameter estimation[J]. IEEE Transactions on Vehicular Technology, 2018, 67(1):409-422. [3] CHEN L, LIU M, DAI Z, et al. Evolution based structure design for low-pass IIR digital filter 10 with fault tolerance[J]. Engineering Letters, 2018, 26(3):340-347. [4] SERSOUR L, DJAMAH T, BETTAYEB M. Nonlinear system identification of fractional Wiener models[J]. Nonlinear Dynamics, 2018, 92(4):1493-1505. [5] KAZEMI M, AREFI M M. A fast iterative recursive least squares algorithm for Wiener model identification of highly nonlinear systems[J]. ISA Transactions, 2017, 67:382-388. [6] GUO J, WANG L Y, YIN G, et al. Identification of Wiener systems with quantized inputs and binary-valued output observations[J]. Automatica, 2017, 78:280-286. [7] TANG Y, QIAO L, GUAN X. Identification of Wiener model using step signals and particle swarm optimization[J]. Expert Systems with Applications, 2010, 37(4):3398-3404. [8] 白晶,毛志忠,蒲铁成. 多变量Hammerstein-Winner模型的参数辨识[J]. 东北大学学报(自然科学版), 2018, 39(1):6-10. (BAI J, MAO Z Z, PU T C. Parameter identification of mutivatiate Hammerstein-Winner model[J]. Journal of Northeastern University (Natural Science), 2018, 39(1):6-10.) [9] 李冬伍,任雪梅,吕晓华. 含间隙非线性的Wiener-Hammerstein系统复合补偿控制[J]. 控制理论与应用, 2016, 33(1):54-61. (LI D W, REN X M, LYU X H. Combined compensation control for Wiener-Hammerstein systems with backlash nonlinearities[J]. Control Theory and Applications, 2016, 33(1):54-61.) [10] VANBEYLEN L. A fractional approach to identify Wiener-Hammerstein systems[J]. Automatica, 2014, 50(3):903-909. [11] SCHOUKENS M, VANDERSTEEN G, ROLAIN Y, et al. Fast identification of Wiener-Hammerstein systems using discrete optimization[J]. Electronics Letters, 2014, 50(25):1942-1944. [12] NAITALI A, GIRI F. Wiener-Hammerstein system identification-an evolutionary approach[J]. International Journal of Systems Science, 2016, 47(1):45-61. [13] 何伟铭,宋小奇,甘屹,等. 传感器校正的优化灰色神经网络建模方法研究[J]. 仪器仪表学报, 2014, 35(3):504-512. (HE W M, SONG X Q, GAN Y, et al. Research on optimized grey neural network modeling method for sensor calibration[J]. Chinese Journal of Scientific Instrument, 2014, 35(3):504-512.) [14] CARRILLO-SANTOS C A, SECK-TUOH-MORA J C, HERNÁNDEZ-ROMERO N, et al. Wavenet identification of dynamical systems by a modified PSO algorithm[J]. Engineering Applications of Artificial Intelligence, 2018, 73:1-9. [15] GAO G, LIU F, SAN H, et al. Hybrid optimal kinematic parameter identification for an industrial robot based on BPNN-PSO[J]. Complexity, 2018, 2018:No.4258676. [16] GUAN S, LI Z. Normalised spline adaptive filtering algorithm for nonlinear system identification[J]. Neural Processing Letters, 2017, 46(2):595-607. [17] DUDUL S V. Identification of a liquid saturated steam heat exchanger using focused time lagged recurrent neural network model[J]. IETE Journal of Research, 2007, 53(1):69-82. [18] CUI L, LIA G, ZHU Z, et al. Adaptive multiple-elites-guided composite differential evolution algorithm with a shift mechanism[J]. Information Sciences, 2018, 422:122-143. [19] ZADEH M R, AMIN S, KHALILI D, et al. Daily outflow prediction by multi layer perceptron with logistic sigmoid and tangent sigmoid activation functions[J]. Water Resources Management, 2010, 24(11):2673-2688. [20] SUBUDHI B, JENA D. A differential evolution based neural network approach to nonlinear system identification[J]. Applied Soft Computing, 2011, 11(1):861-871. [21] KUMAR R, SRIVASTAVA S, GUPTA J R P, et al. Comparative study of neural networks for dynamic nonlinear systems identification[J]. Soft Computing, 2019, 23(1):101-114. |