《计算机应用》唯一官方网站 ›› 2022, Vol. 42 ›› Issue (12): 3876-3883.DOI: 10.11772/j.issn.1001-9081.2021091700
收稿日期:
2021-09-29
修回日期:
2022-01-31
接受日期:
2022-03-30
发布日期:
2022-12-21
出版日期:
2022-12-10
通讯作者:
张军
作者简介:
顾浩杰(1997—),男,江苏南通人,硕士研究生,主要研究方向:计算机仿真、计算机图形学
基金资助:
Received:
2021-09-29
Revised:
2022-01-31
Accepted:
2022-03-30
Online:
2022-12-21
Published:
2022-12-10
Contact:
Jun ZHANG
About author:
GU Haojie, born in 1997, M. S. candidate. His research interests include computer simulation, computer graphics.
Supported by:
摘要:
为了降低水波模拟过程中的计算成本并提高其扩散现象的逼真度,提出一种基于波环粒子包的实时二维平面水波仿真方法。该方法采用波环粒子为基本计算单元,粒子内部继承“波包”的概念,使用多个频段水波叠加的方式再现水波视觉效果。在计算水波反射过程时,通过添加镜像波源的形式减少碰撞计算,避免复杂几何判定。为适应不同硬件的计算性能差异,该方法提供额外的计算精度参数,可针对不同硬件计算能力调节水波反射计算复杂度。实验结果表明,该方法可使用较少的粒子模拟出较为真实的水波运动,且避免了碰撞反射后水波断裂的问题。在相同硬件平台上的性能测试显示,所提波环仿真方法的渲染帧率比传统波包算法高出至少60%,在一些水波状态特别复杂的情况下可达到400%以上的加速效果。
中图分类号:
顾浩杰, 张军. 基于波环粒子的实时水波仿真方法[J]. 计算机应用, 2022, 42(12): 3876-3883.
Haojie GU, Jun ZHANG. Real-time water wave simulation method based on wave annulus particles[J]. Journal of Computer Applications, 2022, 42(12): 3876-3883.
粒子ID | 波源ID | 时间步长 | |||
---|---|---|---|---|---|
100 | 200 | 300 | 400 | ||
1 | 1 | 5.867 3 | 9.989 5 | 14.374 5 | 18.524 1 |
2 | 1 | 5.510 6 | 8.912 1 | 12.515 8 | 15.919 9 |
3 | 1 | 5.819 6 | 9.546 3 | 13.501 1 | 17.242 1 |
4 | 1 | — | 8.694 1 | 12.046 7 | 15.212 6 |
5 | 2 | — | — | 4.464 7 | 8.683 4 |
表1 波环粒子的半径变化
Tab. 1 Radius variation of wave annulus particles
粒子ID | 波源ID | 时间步长 | |||
---|---|---|---|---|---|
100 | 200 | 300 | 400 | ||
1 | 1 | 5.867 3 | 9.989 5 | 14.374 5 | 18.524 1 |
2 | 1 | 5.510 6 | 8.912 1 | 12.515 8 | 15.919 9 |
3 | 1 | 5.819 6 | 9.546 3 | 13.501 1 | 17.242 1 |
4 | 1 | — | 8.694 1 | 12.046 7 | 15.212 6 |
5 | 2 | — | — | 4.464 7 | 8.683 4 |
波源ID | 边界ID | ||||
---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | |
1 | 39.830 0 | 33.074 9 | 31.945 0 | 47.457 5 | 60.170 0 |
2 | 55.253 4 | 40.122 1 | 26.487 8 | 32.692 6 | 44.746 6 |
表2 边界动态表的并集
Tab. 2 Union of boundary dynamic tables
波源ID | 边界ID | ||||
---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | |
1 | 39.830 0 | 33.074 9 | 31.945 0 | 47.457 5 | 60.170 0 |
2 | 55.253 4 | 40.122 1 | 26.487 8 | 32.692 6 | 44.746 6 |
阻尼项 | 时间步长 | ||||
---|---|---|---|---|---|
100 | 200 | 300 | 400 | 500 | |
无阻尼 | 0.133 2 | 0.099 7 | 0.083 2 | 0.072 8 | 0.065 5 |
0.119 0 | 0.079 6 | 0.059 2 | 0.046 3 | 0.037 2 | |
0.106 4 | 0.063 5 | 0.042 2 | 0.029 4 | 0.021 1 | |
0.089 9 | 0.045 2 | 0.025 3 | 0.014 9 | 0.009 0 |
表3 不同阻尼下单粒子的振幅对比
Tab. 3 Comparison of amplitudes of single particles with different damping
阻尼项 | 时间步长 | ||||
---|---|---|---|---|---|
100 | 200 | 300 | 400 | 500 | |
无阻尼 | 0.133 2 | 0.099 7 | 0.083 2 | 0.072 8 | 0.065 5 |
0.119 0 | 0.079 6 | 0.059 2 | 0.046 3 | 0.037 2 | |
0.106 4 | 0.063 5 | 0.042 2 | 0.029 4 | 0.021 1 | |
0.089 9 | 0.045 2 | 0.025 3 | 0.014 9 | 0.009 0 |
时间步长 | 1个波源 | 2个波源 | 3个波源 | 4个波源 | ||||
---|---|---|---|---|---|---|---|---|
本文方法 | 文献[ | 本文方法 | 文献[ | 本文方法 | 文献[ | 本文方法 | 文献[ | |
1 000 | 115.281 | 75.728 | 100.016 | 61.188 | 87.093 | 55.512 | 72.631 | 45.587 |
2 000 | 73.937 | 38.818 | 51.208 | 24.007 | 42.175 | 16.114 | 31.627 | 11.240 |
3 000 | 69.776 | 19.242 | 42.959 | 10.064 | 39.719 | 7.151 | 31.919 | 5.150 |
4 000 | 108.902 | 25.742 | 82.555 | 14.876 | 77.383 | 10.632 | 69.067 | 8.254 |
5 000 | 156.128 | 58.595 | 157.678 | 44.594 | 155.847 | 36.675 | 155.463 | 27.642 |
表4 复杂环境下多波源模拟帧率对比
Tab.4 Comparison of multi-wave source simulation FPS in complex environment
时间步长 | 1个波源 | 2个波源 | 3个波源 | 4个波源 | ||||
---|---|---|---|---|---|---|---|---|
本文方法 | 文献[ | 本文方法 | 文献[ | 本文方法 | 文献[ | 本文方法 | 文献[ | |
1 000 | 115.281 | 75.728 | 100.016 | 61.188 | 87.093 | 55.512 | 72.631 | 45.587 |
2 000 | 73.937 | 38.818 | 51.208 | 24.007 | 42.175 | 16.114 | 31.627 | 11.240 |
3 000 | 69.776 | 19.242 | 42.959 | 10.064 | 39.719 | 7.151 | 31.919 | 5.150 |
4 000 | 108.902 | 25.742 | 82.555 | 14.876 | 77.383 | 10.632 | 69.067 | 8.254 |
5 000 | 156.128 | 58.595 | 157.678 | 44.594 | 155.847 | 36.675 | 155.463 | 27.642 |
1 | CRAIK A D D. The origins of water wave theory[J]. Annual Review of Fluid Mechanics, 2004, 36(1): 1-28. |
2 | 朱真,廖惟博,王章野.流体模拟动画技术新进展[J]. 计算机工程与应用, 2016,52(4): 142-150. 10.3778/j.issn.1002-8331.1505-0268 |
ZHU Z, LIAO W B, WANG Z Y. New technical progress of fluid simulation animation[J]. Computer Engineering and Applications, 2016, 52(4): 142-150. 10.3778/j.issn.1002-8331.1505-0268 | |
3 | 张娟,王昱哲,商柳,等.流体动画生成方法研究综述[J]. 集成技术,2017,6(1): 69-81. 10.3969/j.issn.2095-3135.2017.01.008 |
ZHANG J, WANG Y Z, SHANG L, et al. Review on fluid animation generation[J]. Journal of Integration Technology, 2017, 6(1): 69-81. 10.3969/j.issn.2095-3135.2017.01.008 | |
4 | 吴德阳,唐勇,刘浩阳,等.基于物理的不可压缩流体模拟技术综述[J].高技术通讯,2020,30(11): 1189-1204. 10.3772/j.issn.1002-0470.2020.11.011 |
WU D Y, TANG Y, LIU H Y, et al. A survey of in-compressible fluid simulation techniques based on physics[J]. Chinese High Technology Letters, 2020, 30(11): 1189-1204. 10.3772/j.issn.1002-0470.2020.11.011 | |
5 | 郭福亮,陈修亮,梁英杰.水体仿真与渲染方法研究综述[J]. 计算机应用,2013,33(S2): 224-228. |
GUO F L, CHEN X L, LIANG Y J. Review on water simulation and rendering[J]. Journal of Computer Applications, 2013, 33(S2): 224-228. | |
6 | JESCHKE S, WOJTAN C. Water wave animation via wavefront parameter interpolation[J]. ACM Transactions on Graphics (TOG), 2015, 34(3): 27.1-27.14. 10.1145/2714572 |
7 | CANABAL J A, MIRAUT D, THUEREY N, et al. Dispersion kernels for water wave simulation[J]. ACM Transactions on Graphics (TOG), 2016, 35(6): 202.1-202.10. 10.1145/2980179.2982415 |
8 | JESCHKE S, SKRIVAN T, MULLER-FISCHER M, et al. Water surface wavelets[J]. ACM Transactions on Graphics (TOG), 2018, 37(4): 94.1-94.13. 10.1145/3197517.3201336 |
9 | YUKSEL C, HOUSE D H, KEYSER J. Wave particles[J]. ACM Transactions on Graphics (TOG), 2007, 26(3): 99-106. 10.1145/1276377.1276501 |
10 | YUKSEL C. Real-time water waves with wave particles[D]. Brazos County: Texas A&M University, 2010: 21-52. |
11 | JESCHKE S, WOJTAN C. Water wave packets[J]. ACM Transactions on Graphics (TOG), 2017, 36(4): 103.1-103,12. 10.1145/3072959.3073678 |
12 | SKRIVAN T, SODERSTROM A, JOHANSSON J, et al. Wave curves: simulating lagrangian water waves on dynamically deforming surfaces[J]. ACM Transactions on Graphics (TOG), 2020, 39(4):65. 1-65.12. 10.1145/3386569.3392466 |
13 | 杨怀平,胡事民,孙家广.一种实现水波动画的新算法[J]. 计算机学报,2002, 25(6): 612-617. 10.3321/j.issn:0254-4164.2002.06.009 |
YANG H P, HU S M, SUN J G. A new algorithm for water wave animation[J]. Chinese Journal of Computers, 2002, 25(6): 612-617. 10.3321/j.issn:0254-4164.2002.06.009 | |
14 | WHITTED T. An improved illumination model for shaded display[J]. Communications of the ACM, 1980, 23(6): 343-349. 10.1145/358876.358882 |
15 | PADRINO J C, JOSEPH D D. Correction of Lamb’s dissipation calculation for the effects of viscosity on capillary-gravity waves[J]. Physics of Fluids, 2007, 19(8): 082105.1-082105.6. 10.1063/1.2760244 |
16 | LE M B. Gravity — capillary rings generated by water drops[J]. Journal of Fluid Mechanics, 1988, 197: 415-427. 10.1017/s0022112088003301 |
17 | DEAN R G, DALRYMPLE R A. Water wave mechanics for engineers and scientists[M]. Singapore: World Scientific, 1991: 41-78. 10.1142/1232 |
18 | SCHRECK C, HAFNER C, WOJTAN C. Fundamental solutions for water wave animation[J]. ACM Transactions on Graphics (TOG), 2019, 38(4): 130.1-130.14. 10.1145/3306346.3323002 |
[1] | 効琦, 尹增山, 高爽. 基于检测与跟踪相互迭代的极暗弱目标搜索算法[J]. 计算机应用, 2021, 41(10): 3017-3024. |
[2] | 张垚, 潘峰, 申军伟. 基于小波包分解与矩阵编码的自适应音频隐写算法[J]. 计算机应用, 2015, 35(3): 722-725. |
[3] | 杨杉 王建. 基于高阶阈值函数与小波包的混沌信号降噪[J]. 计算机应用, 2014, 34(4): 977-979. |
[4] | 王畅 谢永华 袁复兴. 基于结构化粒子模型的云可视化应用[J]. 计算机应用, 2013, 33(11): 2013-01. |
[5] | 张小霞 李应. 基于能量检测的复杂环境下的鸟鸣识别[J]. 计算机应用, 2013, 33(10): 2945-2949. |
[6] | 韩亮 蒲秀娟. 使用时频盲源分离和小波包去噪的胎儿心电信号提取[J]. 计算机应用, 2013, 33(08): 2394-2396. |
[7] | 陈修亮 梁英杰 郭福亮. 基于CUDA粒子系统的烟花仿真[J]. 计算机应用, 2013, 33(07): 2059-2062. |
[8] | 徐元金 曾亮 陈世龙. 一种真实感雪场景模拟方法[J]. 计算机应用, 2013, 33(05): 1428-1431. |
[9] | 潘玉民 邓永红 张全柱. 小波神经网络模型的确定性预测及应用[J]. 计算机应用, 2013, 33(04): 1001-1005. |
[10] | 刘鑫 何宏 谭永红. 基于小波包分析的经络心电信号熵特征提取[J]. 计算机应用, 2013, 33(04): 1176-1178. |
[11] | 田宁 范玉刚 吴建德 黄国勇 王晓东. 单向阀的小波包核主元分析故障检测[J]. 计算机应用, 2013, 33(01): 291-294. |
[12] | 曾宇燕 何建农. 基于小波包和边缘特征的遥感图像融合算法[J]. 计算机应用, 2011, 31(10): 2742-2744. |
[13] | 孙懿 郝久玉. 基于小波包变换多载波调制通信系统的均衡算法[J]. 计算机应用, 2010, 30(4): 865-867. |
[14] | 罗为君 林亚平. XNA中基于素材管道的粒子系统设计与实现[J]. 计算机应用, 2010, 30(3): 589-592. |
[15] | 肖春景 李春利 张敏. 脱机手写体签名识别的小波包隐马尔可夫模型[J]. 计算机应用, 2010, 30(2): 445-448. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||