[1] JOHNSON R,ZHANG T. Deep pyramid convolutional neural networks for text categorization[C]//Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics. Stroudsburg, PA:Association for Computational Linguistics, 2017:562-570. [2] WANG B. Disconnected recurrent neural networks for text categorization[C]//Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics. Stroudsburg,PA:Association for Computational Linguistics,2018:2311-2320. [3] YANG Z,YANG D,DYER C,et al. Hierarchical attention networks for document classification[C]//Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics:Human Language Technologies. Stroudsburg, PA:Association for Computational Linguistics,2016:1480-1489. [4] CHEN G,YE D,XING Z,et al. Ensemble application of convolutional and recurrent neural networks for multi-label text categorization[C]//Proceedings of 2017 International Joint Conference on Neural Networks. Piscataway:IEEE,2017:2377-2383. [5] YANG P,SUN X,LI W,et al. SGM:sequence generation model for multi-label classification[C]//Proceedings of the 27th International Conference on Computational Linguistics. Stroudsburg,PA:Association for Computational Linguistics,2018:3915-3926. [6] QIN K,LI C,PAVLU V,et al. Adapting RNN sequence prediction model to multi-label set prediction[C]//Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics:Human Language Technologies. Stroudsburg, PA:Association for Computational Linguistics, 2019:3181-3190. [7] ZHOU W,YU Y,ZHANG M. Binary linear compression for multilabel classification[C]//Proceedings of the 26th International Joint Conference on Artificial Intelligence. San Francisco:Morgan Kaufmann,2017:3546-3552. [8] 胡天磊, 王皓波, 尹文栋. 基于深度双向分类器链的多标签新闻分类算法[J]. 浙江大学学报(工学版),2019,53(11):2110-2117. (HU T L,WANG H B,YIN W D. Multi-label news classification algorithm based on deep bi-directional classifier chains[J]. Journal of Zhejiang University(Engineering Science),2019,53(11):2110-2117.) [9] OSOJNIK A,PANOV P,DŽEROSKI S. Multi-label classification via multi-target regression on data streams[J]. Machine Learning, 2017,106(6):745-770. [10] 李兆玉, 王纪超, 雷曼, 等. 基于引力模型的多标签分类算法[J]. 计算机应用,2018,38(10):2807-2811,2821.(LI Z Y, WANG J C,LEI M,et al. Multi-label classification algorithm based on gravitational model[J]. Journal of Computer Applications,2018,38(10):2807-2811,2821.) [11] 刘慧婷, 冷新杨, 王利利, 等. 联合嵌入式多标签分类算法[J]. 自动化学报,2019,45(10):1969-1982.(LIU H T,LENG X Y,WANG L L,et al. A joint embedded multi-label classification algorithm[J]. Acta Automatica Sinica,2019,45(10):1969-1982.) [12] BAKER S,KORHONEN A. Initializing neural networks for hierarchical multi-label text classification[C]//Proceedings of the 2017 Conference on Biomedical Natural Language Processing. Stroudsburg, PA:Association for Computational Linguistics, 2017:307-315. [13] KURATA G,XIANG B,ZHOU B. Improved neural networkbased multi-label classification with better initialization leveraging label co-occurrence[C]//Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics:Human Language Technologies. Stroudsburg,PA:Association for Computational Linguistics,2016:521-526. [14] SHIMURA K,LI J,FUKUMOTO F. HFT-CNN:learning hierarchical category structure for multi-label short text categorization[C]//Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Stroudsburg,PA:Association for Computational Linguistics,2018:811-816. [15] YANG Y Y,LIN Y A,CHU H M,et al. Deep learning with a rethinking structure for multi-label classification[EB/OL].[2019-03-12]. https://arxiv.org/pdf/1802.01697.pdf. [16] 宋攀, 景丽萍. 基于神经网络探究标签依赖关系的多标签分类[J]. 计算机研究与发展,2018,55(8):1751-1759. (SONG P, JING L P. Exploiting label relationships in multi-label classification with neural networks[J]. Journal of Computer Research and Development,2018,55(8):1751-1759.) [17] LIU J,CHANG W C,WU Y,et al. Deep learning for extreme multi-label text classification[C]//Proceedings of the 40th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York:ACM,2017:115-124. [18] HE Z,YANG M,GAO Y,et al. Joint multi-label classification and label correlations with missing labels and feature selection[J]. Knowledge-Based Systems,2019,163:145-158. [19] BANERJEE S,AKKAYA C,PEREZ-SORROSAL F,et al. Hierarchical transfer learning for multi-label text classification[C]//Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Stroudsburg,PA:Association for Computational Linguistics,2019:6295-6300. [20] 熊涛. 基于长短时记忆网络的多标签文本分类[D]. 杭州:浙江大学,2017. (XIONG T. Multi-label text classification based on long short-term memory network[D]. Hangzhou:Zhejiang University,2017.) [21] SABOUR S,FROSST N,HINTON G E. Dynamic routing between capsules[C]//Proceedings of 31st International Conference on Neural Information Processing Systems. Red Hook,NY:Curran Associates Inc.,2017:3856-3866. [22] YANG M,ZHAO W,YE J,et al. Investigating capsule networks with dynamic routing for text classification[C]//Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Stroudsburg,PA:Association for Computational Linguistics,2018:3110-3119. [23] GONG J,QIU X,WANG S,et al. Information aggregation via dynamic routing for sequence encoding[C]//Proceedings of the 27th International Conference on Computational Linguistics. Stroudsburg, PA:Association for Computational Linguistics, 2018:2742-2752. [24] MARTINS A F T,ASTUDILLO R F. From softmax to sparsemax:a sparse model of attention and multi-label classification[C]//Proceedings of 33rd International Conference on Machine Learning. New York:JMLR.org,2016:1614-1623. |