| 1 | SCHMIDHUBER J. Deep learning in neural networks: an overview[J]. Neural Networks, 2015, 61: 85-117.  10.1016/j.neunet.2014.09.003 | 
																													
																						| 2 | ZHUANG F Z, QI Z Y, DUAN K Y, et al. A comprehensive survey on transfer learning[J]. Proceedings of the IEEE, 2021, 109(1): 43-76.  10.1109/jproc.2020.3004555 | 
																													
																						| 3 | 吴冬茵,桂林,陈钊,等. 基于深度表示学习和高斯过程迁移学习的情感分析方法[J]. 中文信息学报, 2017, 31(1): 169-176. | 
																													
																						|  | WU D Y, GUI L, CHEN Z, et al. Sentiment analysis based on deep representation learning and Gaussian processes transfer learning[J]. Journal of Chinese Information Processing, 2017, 31(1):169-176. | 
																													
																						| 4 | 赵鹏飞,李艳玲,林民. 结合胶囊网络的领域适应意图识别[J]. 计算机工程与应用, 2021, 57(21): 188-194. | 
																													
																						|  | ZHAO P F, LI Y L, LIN M. Intent detection of domain adaptation combined with capsule network[J]. Computer Engineering and Applications, 2021, 57(21): 188-194. | 
																													
																						| 5 | 范涛,王昊,陈玥彤. 基于深度迁移学习的地方志多模态命名实体识别研究[J]. 情报学报, 2022, 41(4): 412-423.  10.3772/j.issn.1000-0135.2022.04.008 | 
																													
																						|  | FAN T, WANG H, CHEN Y T. Research on multimodal named entity recognition of local history based on deep transfer learning[J]. Journal of the China Society for Scientific and Technical Information, 2022, 41(4): 412-423.  10.3772/j.issn.1000-0135.2022.04.008 | 
																													
																						| 6 | 赵鹏飞,李艳玲,林民. 面向迁移学习的意图识别研究进展[J]. 计算机科学与探索, 2020, 14(8): 1261-1274. | 
																													
																						|  | ZHAO P F, LI Y L, LIN M. Research progress on intent detection oriented to transfer learning[J]. Journal of Frontiers of Computer Science and Technology, 2020, 14(8): 1261-1274. | 
																													
																						| 7 | PAN S J, YANG Q. A survey on transfer learning[J]. IEEE Transactions on Knowledge and Data Engineering, 2010, 22(10): 1345-1359.  10.1109/tkde.2009.191 | 
																													
																						| 8 | DAI W Y, YANG Q, XUE G R, et al. Boosting for transfer learning[C]// Proceedings of the 24th International Conference on Machine Learning. New York: ACM, 2007:193-200.  10.1145/1273496.1273521 | 
																													
																						| 9 | BO C, LAM W, TSANG I, et al. Extracting discriminative concepts for domain adaptation in text mining[C]// Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2009:179-188.  10.1145/1557019.1557045 | 
																													
																						| 10 | CHANG H, HAN J, ZHONG C, et al. Unsupervised transfer learning via multi-scale convolutional sparse coding for biomedical applications[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 40(5): 1182-1194.  10.1109/tpami.2017.2656884 | 
																													
																						| 11 | GOODFELLOW I, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial nets[C]// Proceedings of the 27th International Conference on Neural Information Processing Systems - Volume 2. Cambridge: MIT Press, 2014:2672-2680. | 
																													
																						| 12 | GANIN Y, USTINOVA E, AJAKAN H, et al. Domain-adversarial training of neural networks[J]. Journal of Machine Learning Research, 2016, 17: 1-35.  10.1007/978-3-319-58347-1_10 | 
																													
																						| 13 | TZENG E, HOFFMAN J, DARRELL T, et al. Simultaneous deep transfer across domains and tasks[C]// Proceedings of the 2015 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2015: 4068-4076.  10.1109/iccv.2015.463 | 
																													
																						| 14 | TZENG E, HOFFMAN J, SAENKO K, et al. Adversarial discriminative domain adaptation[C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 2962-2971.  10.1109/cvpr.2017.316 | 
																													
																						| 15 | YU C H, WANG J D, CHEN Y Q, et al. Transfer learning with dynamic adversarial adaptation network[C]// Proceedings of the 2019 IEEE International Conference on Data Mining. Piscataway: IEEE, 2019: 778-786.  10.1109/icdm.2019.00088 | 
																													
																						| 16 | BOUSMALIS K, TRIGEORGIS G, SILBERMAN N, et al. Domain separation networks[C]// Proceedings of the 30th International Conference on Neural Information Processing Systems. Red Hook, NY: Curran Associates Inc., 2016:343-351. | 
																													
																						| 17 | TSAI J C, CHIEN J T. Adversarial domain separation and adaptation[C]// Proceedings of the IEEE 27th International Workshop on Machine Learning for Signal Processing. Piscataway: IEEE, 2017: 1-6.  10.1109/mlsp.2017.8168121 | 
																													
																						| 18 | BEN-DAVID S, BLITZER J, CRAMMER K, et al. Analysis of representations for domain adaptation[C]// Proceedings of the 19th International Conference on Neural Information Processing Systems. Cambridge: MIT Press, 2006:137-144.  10.7551/mitpress/7503.003.0022 | 
																													
																						| 19 | BEN-DAVID S, BLITZER J, CRAMMER K, et al. A theory of learning from different domains[J]. Machine Learning, 2010, 79(1/2): 151-175.  10.1007/s10994-009-5152-4 | 
																													
																						| 20 | 王家乾,龚子寒,薛云,等. 基于混合多头注意力和胶囊网络的特定目标情感分析[J]. 中文信息学报, 2020, 34(5): 100-110.  10.3969/j.issn.1003-0077.2020.05.014 | 
																													
																						|  | WANG J Q, GONG Z H, XUE Y, et al. Aspect-based sentiment analysis based on hybrid multi-head attention and capsule networks[J]. Journal of Chinese Information Processing, 2020, 34(5): 100-110.  10.3969/j.issn.1003-0077.2020.05.014 | 
																													
																						| 21 | China Computer Federation. NLPCC 2014 Evaluation tasks test data download[DB/OL]. [2022-11-20].. | 
																													
																						| 22 | Corporation iFLYTEK. SMP2018-ECDT task 1 dataset[DS/OL]. [2022-11-20].. | 
																													
																						| 23 | FANG W, ZHANG F H, SHENG V S, et al. A method for improving CNN-based image recognition using DCGAN[J]. Computers, Materials and Continua, 2018, 57(1): 167-178.  10.32604/cmc.2018.02356 | 
																													
																						| 24 | 戴宏,盛立杰,苗启广. 基于胶囊网络的对抗判别域适应算法[J]. 计算机研究与发展, 2021, 58(9): 1997-2012.  10.7544/issn1000-1239.2021.20200569 | 
																													
																						|  | DAI H, SHENG L J, MIAO Q G. Adversarial discriminative domain adaptation algorithm with CapsNet[J]. Journal of Computer Research and Development, 2021, 58(9): 1997-2012.  10.7544/issn1000-1239.2021.20200569 |