1 |
SCHMIDHUBER J. Deep learning in neural networks: an overview[J]. Neural Networks, 2015, 61: 85-117. 10.1016/j.neunet.2014.09.003
|
2 |
ZHUANG F Z, QI Z Y, DUAN K Y, et al. A comprehensive survey on transfer learning[J]. Proceedings of the IEEE, 2021, 109(1): 43-76. 10.1109/jproc.2020.3004555
|
3 |
吴冬茵,桂林,陈钊,等. 基于深度表示学习和高斯过程迁移学习的情感分析方法[J]. 中文信息学报, 2017, 31(1): 169-176.
|
|
WU D Y, GUI L, CHEN Z, et al. Sentiment analysis based on deep representation learning and Gaussian processes transfer learning[J]. Journal of Chinese Information Processing, 2017, 31(1):169-176.
|
4 |
赵鹏飞,李艳玲,林民. 结合胶囊网络的领域适应意图识别[J]. 计算机工程与应用, 2021, 57(21): 188-194.
|
|
ZHAO P F, LI Y L, LIN M. Intent detection of domain adaptation combined with capsule network[J]. Computer Engineering and Applications, 2021, 57(21): 188-194.
|
5 |
范涛,王昊,陈玥彤. 基于深度迁移学习的地方志多模态命名实体识别研究[J]. 情报学报, 2022, 41(4): 412-423. 10.3772/j.issn.1000-0135.2022.04.008
|
|
FAN T, WANG H, CHEN Y T. Research on multimodal named entity recognition of local history based on deep transfer learning[J]. Journal of the China Society for Scientific and Technical Information, 2022, 41(4): 412-423. 10.3772/j.issn.1000-0135.2022.04.008
|
6 |
赵鹏飞,李艳玲,林民. 面向迁移学习的意图识别研究进展[J]. 计算机科学与探索, 2020, 14(8): 1261-1274.
|
|
ZHAO P F, LI Y L, LIN M. Research progress on intent detection oriented to transfer learning[J]. Journal of Frontiers of Computer Science and Technology, 2020, 14(8): 1261-1274.
|
7 |
PAN S J, YANG Q. A survey on transfer learning[J]. IEEE Transactions on Knowledge and Data Engineering, 2010, 22(10): 1345-1359. 10.1109/tkde.2009.191
|
8 |
DAI W Y, YANG Q, XUE G R, et al. Boosting for transfer learning[C]// Proceedings of the 24th International Conference on Machine Learning. New York: ACM, 2007:193-200. 10.1145/1273496.1273521
|
9 |
BO C, LAM W, TSANG I, et al. Extracting discriminative concepts for domain adaptation in text mining[C]// Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2009:179-188. 10.1145/1557019.1557045
|
10 |
CHANG H, HAN J, ZHONG C, et al. Unsupervised transfer learning via multi-scale convolutional sparse coding for biomedical applications[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 40(5): 1182-1194. 10.1109/tpami.2017.2656884
|
11 |
GOODFELLOW I, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial nets[C]// Proceedings of the 27th International Conference on Neural Information Processing Systems - Volume 2. Cambridge: MIT Press, 2014:2672-2680.
|
12 |
GANIN Y, USTINOVA E, AJAKAN H, et al. Domain-adversarial training of neural networks[J]. Journal of Machine Learning Research, 2016, 17: 1-35. 10.1007/978-3-319-58347-1_10
|
13 |
TZENG E, HOFFMAN J, DARRELL T, et al. Simultaneous deep transfer across domains and tasks[C]// Proceedings of the 2015 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2015: 4068-4076. 10.1109/iccv.2015.463
|
14 |
TZENG E, HOFFMAN J, SAENKO K, et al. Adversarial discriminative domain adaptation[C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 2962-2971. 10.1109/cvpr.2017.316
|
15 |
YU C H, WANG J D, CHEN Y Q, et al. Transfer learning with dynamic adversarial adaptation network[C]// Proceedings of the 2019 IEEE International Conference on Data Mining. Piscataway: IEEE, 2019: 778-786. 10.1109/icdm.2019.00088
|
16 |
BOUSMALIS K, TRIGEORGIS G, SILBERMAN N, et al. Domain separation networks[C]// Proceedings of the 30th International Conference on Neural Information Processing Systems. Red Hook, NY: Curran Associates Inc., 2016:343-351.
|
17 |
TSAI J C, CHIEN J T. Adversarial domain separation and adaptation[C]// Proceedings of the IEEE 27th International Workshop on Machine Learning for Signal Processing. Piscataway: IEEE, 2017: 1-6. 10.1109/mlsp.2017.8168121
|
18 |
BEN-DAVID S, BLITZER J, CRAMMER K, et al. Analysis of representations for domain adaptation[C]// Proceedings of the 19th International Conference on Neural Information Processing Systems. Cambridge: MIT Press, 2006:137-144. 10.7551/mitpress/7503.003.0022
|
19 |
BEN-DAVID S, BLITZER J, CRAMMER K, et al. A theory of learning from different domains[J]. Machine Learning, 2010, 79(1/2): 151-175. 10.1007/s10994-009-5152-4
|
20 |
王家乾,龚子寒,薛云,等. 基于混合多头注意力和胶囊网络的特定目标情感分析[J]. 中文信息学报, 2020, 34(5): 100-110. 10.3969/j.issn.1003-0077.2020.05.014
|
|
WANG J Q, GONG Z H, XUE Y, et al. Aspect-based sentiment analysis based on hybrid multi-head attention and capsule networks[J]. Journal of Chinese Information Processing, 2020, 34(5): 100-110. 10.3969/j.issn.1003-0077.2020.05.014
|
21 |
China Computer Federation. NLPCC 2014 Evaluation tasks test data download[DB/OL]. [2022-11-20]..
|
22 |
Corporation iFLYTEK. SMP2018-ECDT task 1 dataset[DS/OL]. [2022-11-20]..
|
23 |
FANG W, ZHANG F H, SHENG V S, et al. A method for improving CNN-based image recognition using DCGAN[J]. Computers, Materials and Continua, 2018, 57(1): 167-178. 10.32604/cmc.2018.02356
|
24 |
戴宏,盛立杰,苗启广. 基于胶囊网络的对抗判别域适应算法[J]. 计算机研究与发展, 2021, 58(9): 1997-2012. 10.7544/issn1000-1239.2021.20200569
|
|
DAI H, SHENG L J, MIAO Q G. Adversarial discriminative domain adaptation algorithm with CapsNet[J]. Journal of Computer Research and Development, 2021, 58(9): 1997-2012. 10.7544/issn1000-1239.2021.20200569
|