[1] 彭力. 视觉物联网[M]. 北京:电子工业出版社, 2016:6-8. (PENG L. Visual Internet of Things[M]. Beijing:Publishing House of Electronics Industry,2016:6-8.) [2] CURRY R M,SMITH J C. A survey of optimization algorithms for wireless sensornetwork lifetime maximization[J]. Computers and Industrial Engineering,2016,101:145-166. [3] 温俊, 蒋杰, 窦文华. 公平的有向传感器网络方向优化和节点调度算法[J]. 软件学报, 2009, 20(3):644-659.(WEN J,JIANG J, DOU W H. Equitable direction optimizing and node scheduling for coverage in directional sensornetworks[J]. Journal of Software, 2009,20(3):644-659.) [4] 程卫芳, 廖湘科, 沈昌祥. 有向传感器网络最大覆盖调度算法[J]. 软件学报, 2009, 20(4):975-984.(CHENG W F,LIAO X K, SHEN C X. Maximal coverage scheduling in wireless directional sensornetworks[J]. Journal of Software,2009,20(4):975-984.) [5] 张聚伟, 王宇, 杨挺. 基于数据融合的有向传感器网络全覆盖部署[J]. 传感技术学报, 2017, 30(1):139-145.(ZHANG J W, WANG Y, YANG T. Full coverage deployment algorithm of directional sensornetwork based on data fusion[J]. Chinese Journal of Sensors and Actuators,2017,30(1):139-145.) [6] SHARMIN S,NUR F N,RAZZAQUE M A,et al. Target coverageaware clustering for directional sensornetworks[C]//Proceedings of the 2017 IEEE International Symposium on Parallel and Distributed Processing with Applications/2017 IEEE International Conference on Ubiquitous Computing and Communications. Piscataway:IEEE,2017:116-120. [7] WANG H,CHEN Y,DONG S. Research on efficient-efficient routing protocol for WSNs based on improved artificial bee colony algorithm[J]. IET Wireless Sensor Systems,2017,7(1):15-20. [8] ARORA V K, SHARMA V, SACHDEVA M. A multiple pheromone ant colony optimization scheme for energy-efficient wireless sensornetworks[J]. Soft Computing,2020,24(1):543-553. [9] NISHA U N, BASHA A M. Triangular fuzzy-based spectral clustering for energy-efficient routing in wireless sensornetwork[J]. The Journal of Supercomputing,2020,76(6):4302-4327. [10] DONG S, SAREM M, ZHOU W. Distributed data gathering algorithm based on spanning tree[J]. IEEE Systems Journal, 2020(Early Access):1-8. [11] LIEW S Y,TAN C K,GAN M L,et al. A fast,adaptive,and energy-efficient data collection protocol in multi-channel-multipath wireless sensornetworks[J]. IEEE Computational Intelligence Magazine,2018,13(1):30-40. [12] SINGH A, ROSSI A, SEVAUX M. Heuristics for lifetime maximization in camera sensornetworks[J]. Information Sciences,2017,385/386:475-491. [13] 刘人杰, 谢红. 基于优先级的有向传感器网络目标覆盖[J]. 传感器与微系统, 2011, 30(10):8-11.(LIU R J,XIE H. Target coverage of directional sensornetworks based on priority[J]. Transducer and Microsystem Technologies, 2011, 30(10):8-11.) [14] JIA J,DONG C,HE X,et al. Sensor scheduling for target coverage in directional sensornetworks[J]. International Journal of Distributed Sensor Networks,2017,13(6):1-12. [15] ALIBEIKI A,MOTAMENI A,MOHAMADI H. A new geneticbased approach for maximizingnetwork lifetime in directional sensornetworks with adjustable sensing ranges[J]. Pervasive and Mobile Computing,2019,52:1-12. [16] 王力立, 吴晓蓓, 黄成, 等. 基于目标覆盖的异构有向传感器网络分布式节点调度策略[J]. 控制与决策, 2016, 31(12):2140-2146.(WANG L L,WU X B,HUANG C,et al. Node scheduling strategy based on target coverage for heterogeneous directional sensornetworks[J]. Control and Decision,2016,31(12):2140-2146.) [17] 李明, 胡江平. 异构传感器网络中基于差分进化的调度算法[J]. 计算机工程,2019,45(9):70-75. (LI M,HU J P. Scheduling algorithm based on differential evolution in heterogeneous sensornetwork[J]. Computer Engineering,2019, 45(9):70-75.) [18] SALCEDO-SANZ S, GALL-MARAZUELA D, PASTORSÁNCHEZ A,et al. Offshore wind farm design with the coral reefs optimization algorithm[J]. Renewable Energy, 2014, 63:109-115. [19] LI M,MIAO C,LEUNG C. A coral reef algorithm based on learning automata for the coverage control problem of heterogeneous directional sensornetworks[J]. Sensors,2015,15(12):30617-30635. [20] SIMON D. Biogeography-based optimization[J]. IEEE Transactions on Evolutionary Computation, 2008, 12(6):702-713. [21] BILAL,PANT M,ZAHEER H,et al. Differential evolution:a review of more than two decades of research[J]. Engineering Applications of Artificial Intelligence, 2020, 90:Article No. 103479. [22] 龙文, 蔡绍洪, 焦建军, 等. 求解高维优化问题的混合灰狼优化算法[J]. 控制与决策, 2016, 31(11):1991-1997.(LONG W, CAI S H,JIAO J J,et al. Hybrid grey wolf optimization algorithm for high-dimensional optimization[J]. Control and Decision, 2016,31(11):1991-1997.) [23] 刘怀亮, 刘淼. 一种混合遗传模拟退火算法及其应用[J]. 广州大学学报(自然科学版), 2005, 4(2):141-145.(LIU H L,LIU M. A mixed genetic simulated annealing algorithm and its application[J]. Journal of Guangzhou University(Natural Science Edition),2005,4(2):141-145.) [24] POTTHURI S,SHANKAR T,RAJESH A. Lifetime improvement in wireless sensornetworks using hybrid Differential Evolution and Simulated Annealing (DESA)[J]. Ain Shams Engineering Journal,2018,9(4):655-663. [25] ISHIBUCHI H, MURATA T. A multi-objective genetic local search algorithm and its application to flowshop scheduling[J]. IEEE Transactions on Systems,Man,and Cybernetics,Part C (Applications and Reviews),1998,28(3):392-403. [26] 高鹰, 谢胜利. 基于模拟退火的粒子群优化算法[J]. 计算机工程与应用, 2004, 40(1):47-50.(GAO Y,XIE S L. Particle swarm optimization algorithms based on simulated annealing[J]. Computer Engineering and Applications,2004,40(1):47-50.) |